Global in Time Results for a Parabolic Equation Solution in Non-rectangular Domains
Скачать файл:
URI (для ссылок/цитирований):
https://elib.sfu-kras.ru/handle/2311/135198Автор:
Bouzidi, Louanas
Kheloufi, Arezki
Бузиди, Луанас
Хелоуфи, Арезки
Дата:
2020-05Журнал:
Журнал Сибирского федерального университета.Математика и физика.Journal of Siberian Federal University. Mathematics & Physics, 2020 13 (3)Аннотация:
This article deals with the parabolic equation
∂tw − c(t)∂2x
w = f in D, D =
{
(t, x) ∈ R2 : t > 0, φ1 (t) < x < φ2(t)
}
with φi : [0,+∞[→ R, i = 1, 2 and c : [0,+∞[→ R satisfying some conditions and the problem is
supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem
in a suitable parabolic Sobolev space. We prove in particular that for f ∈ L2(D) there exists a unique
solution w such that w, ∂tw, ∂jw ∈ L2(D), j = 1, 2. Notice that the case of bounded non-rectangular
domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a
strip region combined with some interpolation inequality. This work complements the results obtained
in [19] in the case of Cauchy-Dirichlet boundary conditions В этой статье рассматривается параболическое уравнение
∂tw − c(t)∂2xw = f in D, D ={(t, x) ∈ R2 : t > 0, φ1 (t) < x < φ2(t)},
где φi : [0,+∞[→ R, i = 1, 2 и c : [0,+∞[→ R, удовлетворяя некоторым условиям, задача дополняется граничными условиями типа Дирихле-Робина. Мы изучаем проблему глобальной регулярности в подходящем параболическом пространстве Соболева. В частности, докажем, что для
f ∈ L2(D) существует единственное решение w такое, что w, ∂tw, ∂jw ∈ L2(D), j = 1, 2. Обратите внимание, что случай ограниченных непрямоугольных областей изучается в [9]. Доказательство
основано на оценках энергии после преобразования задачи в полосовой области в сочетании с некоторым интерполяционным неравенством. Эта работа дополняет результаты, полученные в [19] в случае граничных условий Коши-Дирихле
Коллекции:
Метаданные:
Показать полную информациюСвязанные материалы
Показаны похожие ресурсы по названию, автору или тематике.
-
On a Second Order Linear Parabolic Equation with Variable Coefficients in a Non-Regular Domain of R³
Boulkouane, Ferroudj; Kheloufi, Arezki; Булкоан, Ферроди; Келуфи, Арезки (Сибирский федеральный университет. Siberian Federal University, 2018-08)This paper is devoted to the study of the following variable-coefficient parabolic equation in non-divergence form @tu ����� Σ2 i=1ai(t;x 1; x2)@iiu +Σ2i=1bi(t; x1; x2)@iu + c(t; 1; x2)u = f(t; x1; x2); subject to ... -
Study of the Non-isothermal Coupled Problem with Mixed Boundary Conditions in a Thin Domain with Friction Law
Saadallah, Abdelkader; Benseridi, Hamid; Dilmi, Mourad; Саадалах, Абделкадер; Бенсериди, Хамид; Дилми, Моурад (Сибирский федеральный университет. Siberian Federal University, 2018-12)This paper deals with the asymptotic behavior of a coupled system involving of an incompressible Bing- ham fluid and the equation of the heat energy, in a three-dimensional bounded domain with Tresca free boundary friction ... -
Global in Space Regularity Results for the Heat Equation with Robin-Neumann Type Boundary Conditions in Time-varying Domains
Boudjeriou, Tahir; Kheloufi, Arezki; Буджериу, Тахир; Хелуфи, Арезки (Сибирский федеральный университет. Siberian Federal University, 2019-06)This article deals with the heat equation @tu @2x u = f in D; D = {(t; x) 2 R2 : a < t < b; (t) < x < +1} with the function satisfying some conditions and the problem is supplemented with boundary conditions of ... -
Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem
Вяткин, А. В.; Кучунова, Е. В. (2019-01)A conservative semi-Lagrangian method is developed in order to solve three-dimensional linear advection equation. It based on balance equation in integral form. Main feature of roposed method consists in way of computation ... -
On the Solvability of the Identification Problem for a Source Function in a Quasilinear Parabolic System of Equations in Bounded and Unbounded Domains
Kopylova, Vera G.; Frolenkov, Igor V.; Копылова, Вера Г.; Фроленков, Игорь В. (Сибирский федеральный университет. Siberian Federal University, 2021)The paper considers the problem of identification for a source function in one of two equations of parabolic quasilinear system. The case of Cauchy data in an unbounded domain and the case of boundary conditions of the ...