Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem
Скачать файл:
URI (для ссылок/цитирований):
https://link.springer.com/chapter/10.1007/978-3-030-11539-5_73https://elib.sfu-kras.ru/handle/2311/129872
Автор:
Вяткин, А. В.
Кучунова, Е. В.
Коллективный автор:
Институт математики и фундаментальной информатики
Базовая кафедра вычислительных и информационных технологий
Дата:
2019-01Журнал:
Lecture Notes in Computer ScienceКвартиль журнала в Scopus:
Q2Квартиль журнала в Web of Science:
Q4Библиографическое описание:
Вяткин, А. В. Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem [Текст] / А. В. Вяткин, Е. В. Кучунова // Lecture Notes in Computer Science: Finite Difference Methods. Theory and Applications. — 2019. — Т. 11386. — С. 621-629Аннотация:
A conservative semi-Lagrangian method is developed in order to solve three-dimensional linear advection equation. It based on balance equation in integral form. Main feature of roposed method consists in way of computation of integral at lower time level. To compute integral, we decompose a domain of integration into several tetrahedrons and approximate integrand by trilinear function.