The Closure and the Interior of C-convex Sets
View/ Open:
URI (for links/citations):
https://elib.sfu-kras.ru/handle/2311/111818Author:
Znamenskij, Sergej V.
Знаменский, Сергей В.
Date:
2019-08Journal Name:
Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physics; 2019 12 (4)Abstract:
C-convexity of the closure, interiors and their lineal convexity are considered for C-convex sets under
additional conditions of boundedness and nonempty interiors. The following questions on closure and
the interior of C-convex sets were tackled
1. The closure of a bounded C-convex domain may not be lineally-convex.
2. The closure of a non-empty interior of a C-convex compact in Cn may not coincide with the original
compact.
3. The interior of the closure of a bounded C-convex domain always coincides with the domain itself.
The questions were formulated by Yu. B. Zelinsky Для C-выпуклых множеств также и при дополнительных условиях ограниченности и непустоты внутренности исследованы C-выпуклость замыкания и внутренности и их линейчатая выпуклость. Получены следующие ответы на цикл вопросов Ю.Б. Зелинского о замыкании и внутренности C-выпуклых множеств:
1. Замыкание ограниченной C-выпуклой области может не быть линейчато выпуклым.
2. Замыкание непустой внутренности C-выпуклого компакта в Cn может не совпасть
с исходным компактом.
3. Внутренность замыкания ограниченной C-выпуклой области всегда совпадает с самой
областью
Collections:
Metadata:
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
SKETCH OF THE THEORY OF GROWTH OF HOLOMORPHIC FUNCTIONS IN A MULTIDIMENSIONAL TORUS
Zavyalov, M. N.; Maergoiz, L. S. (2019-09)We develop an approach to the theory of growth of the class H(Tn) of holomorphic functions in a multidimensional torus Tn based on the structure of elements of this class and well-known results of the theory of growth of ... -
Joint Distribution of the Number of Vertices and the Area of Convex Hulls Generated by a Uniform Distribution in a Convex Polygon
Khamdamov, Isakjan M.; Chay, Zoya S.; Хамдамов, Исакжан М.; Чай, Зоя С. (Сибирский федеральный университет. Siberian Federal University, 2021)A convex hull generated by a sample uniformly distributed on the plane is considered in the case when the support of a distribution is a convex polygon. A central limit theorem is proved for the joint distribution of the ... -
Maximal Functions and the Dirichlet Problem in the Class of m-convex Functions
Sadullaev, Azimbay; Sharipov, Rasulbek; Садуллаев, Азимбай; Шарипов, Расулбек (Siberian Federal University. Сибирский федеральный университет, 2024-08)In this work, we introduce the concept of maximal m-convex (m cv) functions and we solve the Dirichlet Problem with a given continuous boundary function for strictly m-convex domains D Rn. We prove that for the solution ... -
Rigidity Conditions for the Boundaries of Submanifolds in a Riemannian Manifold
Kopylov, Anatoly P.; Korobkov, Mikhail V.; Копылов, Анатолий П.; Коробков, Михаил В. (Сибирский федеральный университет. Siberian Federal University., 2016-07)Developing A.D. Aleksandrov’s ideas, the first author proposed the following approach to study of rigid- ity problems for the boundary of a C0-submanifold in a smooth Riemannian manifold. Let Y1 be a two-dimensional ... -
Subharmonic Functions on Complex Hyperplanes of Cn
Abdullaev, Bakhrom I.; Абдуллаев, Бахром И. (Сибирский федеральный университет. Siberian Federal University., 2013-11)In this paper is considered a class of m−wsh functions defined with relation ddcu ^ (ddc|z|2)n−m > 0, and is studied some properties of polar sets for this class