COMBINATORIAL PROBLEMS CONNECTED WITH P. HALLS COLLECTION PROCESS
URI (для ссылок/цитирований):
http://semr.math.nsc.ru/cont.htmlhttps://elib.sfu-kras.ru/handle/2311/142258
Автор:
Леонтьев, В. М.
Коллективный автор:
Институт математики и фундаментальной информатики
Региональный научно-образовательный математический центр «Красноярский математический центр»
Дата:
2020-06Журнал:
Siberian Electronic Mathematical ReportsКвартиль журнала в Scopus:
Q3Квартиль журнала в Web of Science:
без квартиляБиблиографическое описание:
Леонтьев, В. М. COMBINATORIAL PROBLEMS CONNECTED WITH P. HALLS COLLECTION PROCESS [Текст] / В. М. Леонтьев // Siberian Electronic Mathematical Reports. — 2020. — Т. 17. — С. 873-889Аннотация:
Let M_1, \ldots, M_r be nonempty subsets of any totally ordered set. Imposing some restricitons on these subsets, we find an expression for thenumber of elements (\lambda_1, \ldots, \lambda_r) \in M_1, \ldots, M_r that satisfy the condition C, where C is a propositional formula consisting of such conditions as \lambda_i = \lambda_j , \lambda_i < \lambda_j, i,j \in \overline{1,r}.