On Carleman-type Formulas for Solutions to the Heat Equation
Скачать файл:
Автор:
Куриленко, Илья Алексеевич
Шлапунов, Александр Анатольевич
Коллективный автор:
Институт математики и фундаментальной информатики
Кафедра теории функций
Дата:
2019-08Журнал:
Journal of Siberian Federal University - Mathematics and PhysicsКвартиль журнала в Scopus:
Q3Библиографическое описание:
Куриленко, Илья Алексеевич. On Carleman-type Formulas for Solutions to the Heat Equation [Текст] / Илья Алексеевич Куриленко, Александр Анатольевич Шлапунов // Journal of Siberian Federal University - Mathematics and Physics. — 2019. — Т. 12 (№ 4). — С. 421-431Аннотация:
We apply the method of integral representations to study the ill-posed Cauchy problem for the heat equa-
tion. More precisely we recover a function, satisfying the heat equation in a cylindrical domain, via
its values and the values of its normal derivative on a given part of the lateral surface of the cylinder.
We prove that the problem is ill-posed in the natural (anisotropic) spaces (Sobolev and H¨older spaces,
etc). Finally, we obtain a uniqueness theorem for the problem and a criterion of its solvability and a
Carleman-type formula for its solution.