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We apply the method of integral representations to study the ill-posed Cauchy problem for the heat equa-
tion. More precisely we recover a function, satisfying the heat equation in a cylindrical domain, via
its values and the values of its normal derivative on a given part of the lateral surface of the cylinder.
We prove that the problem is ill-posed in the natural (anisotropic) spaces (Sobolev and Hdélder spaces,
etc). Finally, we obtain a uniqueness theorem for the problem and a criterion of its solvability and a
Carleman-type formula for its solution.

Keywords: The heat equation, ill-posed problems, integral representation method, Carleman formulas.

The integral representation method is the core of investigations of the ill-posed problems for
partial differential equations, see [1, 2, 3]. Lev Aizenberg [4, 5] noted that the Cauchy problem
for the Cauchy—Riemann equations is closely related to the problem of analytic continuation
even if its entries are not analytic. He found principal ingredients, leading to the construction
of integral formulas for its solution (Carleman formulas): a proper integral formula recovering
the function via the data on the whole boundary, the uniqueness theorem and an effective tool,
providing the analytic continuation from a domain to a larger one. This method was successfully
used in the framework of Hilbert space methods to investigate the Cauchy problem for general
elliptic systems of partial differential equations, see [6, 7, 8], and even to elliptic complexes of
differential operators, see [9]. It provided both a solvability criterion and formulas for exact and
approximate solutions. Recently, the scheme of using the concept of analytic continuation was
adopted to obtain a solvability criterion for the ill-posed Cauchy problem in Hélder spaces for
some parabolic operators as well, see [10, 11].

In this paper we concentrated our efforts in the construction of Carleman-type formulas for
solutions to the heat equation. Namely, we recover a function satisfying the heat equation in a
cylindrical domain via its values and the values of its normal derivative on a given part of the
lateral surface of the cylinder. The principal difference with [10, 11] is that we use anisotropic
Holder and Sobolev spaces and we succeed to involve Hilbert space methods, too.

1. Preliminaries

Let © be a bounded domain in n-dimensional linear space R™ with the coordinates x =
(1,...,2,). As usual we denote by Q the closure of €, and we denote by 9 its boundary.
In the sequel we assume that 0f) is piece-wise smooth. We denote by Qp the bounded open
cylinder Q x (0,7) in R**! with a positive altitude 7. Let also I' C 952 be a non empty
connected relatively open subset of 9Q. Then I'r =T x (0, T) and T'7 =T x [0, T7.
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We consider functions on subsets in R”™ and R"*!. As usual, for s € Z, we denote by C*(Q)
the space of all s times continuously differentiable functions in Q. Next, for a (relatively open)
set S C 09 denote by C*(2 U S) the set of such functions from the space C*(Q?) that all their
derivatives up to order s can be extended continuously onto Q U S. The standard topology of
these metrizable spaces induces the uniform convergence on compact subsets in Q U S together
with all the partial derivatives up to order s (the case S = ) is included). We will also use the
so-called Holder spaces (cf., [12, Ch.1, §1]. Recall that a function u, defined on a set M € R", is
called Hélder continuous with a power 0 < X\ < 1 on M, if there is such a constant C' > 0 that

ju@) —uly) _

<U >\ M= sup 5\
syeM,aty T =Yl

Let C**(Q U S) stand for the set of such Holder continuous functions that all their partial
derivatives up to order s are also Holder continuous functions with a power A over each compact
subset of QU S. Clearly, C**(Q U 9€) = C**(9Q) is a Banach space with the norm,

ullgen@)y = Z (ma§|8°‘u(m)|+ <0 >y g )

laj<s ~ °€%

see, for instance, [12, 13, 14]. In general, the space C**(Q2 U S) again can be treated as a
metrizable space, generated by a system of seminorms p5*(u) = [lul|cen @, With a suitable

exhaustion {Q,, }men of the set QU S. By the definition, the space C**(Q U S) is continuously
embedded into C*" Y (QU S) if s+ A > s + N, A, XN €[0,1).

To investigate the heat equation we need also the anisotropic (parabolic) spaces, see [12, Ch.
1], [14, Ch. 8]. For this purpose, let C?5*(Qr) stand for the set of all continuous functions u in
Qr, having in Q7 the continuous partial derivatives 97 03w with all multi-indexes («, j) € 27 xZ
satisfying |a| 4 2j < 2s where, as usual, |a| = 377, a;. Similarly, we denote by C?**%*(Qr) the
set of continuous functions in Q7, such that all partial derivatives 9°u belong to C2%(Qy) if
B € Z" satisfies || < k, k € Z. Of course, it is natural to agree that C**T0:5(Qp) = C?55(Qr),
C%(Qr) = C(Qr) and C°(Q) = C(2). We also denote by C?*T%((Q U S)r) the set of such
functions u from the space C25+%:(Q7) that their partial derivatives 8] 99 Pu, 25 + |a| < 2s,
|8] < k, can be extended continuously onto (Q2U S)r. The standard topology of these metrizable
space induces the uniform convergence on compact subsets of (2 U S)r together with all partial
derivatives used in its definition (the case S = () is included).

We will also use the so-called anisotropic Holder spaces (cf., [12, Ch. 1], [14, Ch. 8]). Recall
that a function u(x,t), defined on a set My = M x [0,T] € R"™L is called anisotropic Hélder
continuous with a power 0 < A < 1 on My, if there is such a constant C > 0 that

<u>xmp= sup <u(-,t) >xn +sup <u(z,-) >x/207< C.
te[0,T] reM

Let C2s+k:sAM2((Q U S)r) stand for the set of anisotropic Hélder continuous functions with
a power A over each compact subset of (2 U S)r together with all partial derivatives 02189l u
where |3| < k, |a| + 27 < 2s. Clearly, C**T#22/2(Qr) is a Banach space with the norm,

||UHC2s+k,s,A,)\/2(ﬁ) = Z Z ( ril)i% 8$+585u(x,t)|+ < 8a+ﬁ8ju >>\’m)
|BI<k |al+2j<2s NPT

see, for instance, [14, Ch. 8]. In general, the space C251%:5AA/2((QU S)7) can be treated again
as a metrizable space, generated by a system of seminorms pfn)‘Tk (w) = llull gossr.cxnsz@ ) With

a suitable exhaustion {€2,,},en of the set Q U S. Obviously, the space C25T+:5AA2((Q U S)7)

- 92—



I.A. Kurilenko, A.A. Shlapunov On Carleman-type formulas for solutions to the heat equation

is continuously embedded into C25'++-" A X/2(QU S)p) if s+ A > & + N, A, N € [0,1) and
kE>K.

In order to invoke the Hilbert space approach, we need anisotropic (parabolic) Sobolev spaces
H?*5(Qr), s € Zy, see, [12, 15], i.e. the set of all measurable functions u in Q7 such that
all generalized partial derivatives 0703w with all multi-indexes («,j) € Z7% x Z, satisfying
la| + 27 < 2s, belong to the Lebesgue class L?(Qr). This is a Hilbert space with the inner
product

(U, v) 52005 (Qp) = Z / A1 9% (x, t) &) 9%u(x, t)dadt. (1)
Qr

ol +27<2s

We also may define H2%*(21) as the completion of the space C%%*(Q27) with respect to the norm
| - || 202 () generated by the inner product (1). For s = 0 we have H*%(Qr) = L*(Qr).

Let now A, = > 8&_7% be the Laplace operator in R” and let £ = 0, — pA,, stand for the
j=1

heat operator in R™*!. This operator plays essential role in the contemporary natural science,
n

see, for instance, [17]. Now let 9, = }_ v;0,; denote the derivative at the direction of the exterior

j=1
unit normal vector v = (v, ..., ;) to the surface 9Q. As 9 is piece-wise smooth, the normal
vector v is defined almost everywhere on 0f2. It is known that the standard initial boundary
value problem for the heat operator consists of the recovering of the function w over the cylinder
Qr satisfying the heat equation

Lu=fin Qp, (2)

the boundary and initial conditions
a(z, t)u(z,t) + b(z,t)0,u(z,t) = 0 on N7, u(x,0) = up(x) on €. (3)

for fixed real-valued functions a and b and given data f and ug. Problem (2), (3) is well-posed
over the scales of anisotropic Holder and Sobolev spaces, see, for instance, [12, 13, 14, 15, 16,
17, 18]. Instead, we consider the Cauchy problem in the cylinder Qr in the sense of the Cauchy-
Kowalevski Theorem with respect to the space variables, cf. [19].

Problem 1. Let functions u; € C1°(T'r), ug € C(T'r) and f € C(Qr) be given. Find a function
u € C>HQr)NCYO((QUT)7) satisfying the heat equation (2) and boundary conditions

u(x,t) =uy(z, t) on Ty, Oyu(z,t) =us(x, t) on Ip. (4)

The motivation of Problem 1 is rather transparent. It describes the situation where for some
reasons at each time ¢t € [0,7] only part T’ of the boundary of the "body" Q is available for
measurements.

Example 1. If n > 1 then the famous Hadamard example for the Cauchy problem for the
Laplace operator is fit to demonstrate the absence of the continuity of the solution with respect
to the data in all reasonable standard spaces (Holder spaces, Sobolev spaces, etc., see [19]). For
instance, denote by @, r the n-dimensional cube {0 < z,, < R,1 < m < n} and take the
cube @1 as the base  of the cylinder Qp. Let I' be the face {z,, = 0} of the cube @, 1 and
I'r = Qn-1,1%(0,T). Then, for each a; € R, j € N, the function u;(x,t) = a; cos(jz1) cosh(jz,)
is a solution to problem (2), (4), with the data

fi =0, ui; = a;cos(jz1), ug; =0.
If lim s+ 00 72°T%a; = 0 then for each k € Z, and each A € [0, 1] we have

fi — 0in C®°(Q7), uy; — 0in C*FESAN2ITL) gy — 0 in C25FR—Ls AN (T,
J—>o0 J—0o0 J—0o0
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On the other hand, the sequence |u;(x, t)| is unbounded for each (z,t) € Qr.

If n = 1 then we could not directly provide a corresponding example but we reduce the
problem to an ill-posed one in Theorem 2 below. However, Problem 1 become ill-posed if we
additionally impose rather mild restrictions on the growth of its solutions in Qr, see [10]. Indeed,
consider the sequence of smooth solutions u;(z, t) = a; eHi®(t=T)+izn to problem (2), (4), with
the data

.2 )
t—T ; t—T
fi=0, ui; =aje" (t=T) Uy ; = jajetd (t=7)

If lim; 1 o0 52t Va; = 0 then for each k € Z, and each A € [0, 1] we have

fj jjo 0 in Cvoo(m)7 uy jjo 0 in C2s+k,s,)\,k/2(ﬁ)’ Uus j;é 0in C2s+k71,s,>\,)\/2(ﬁ)’

On the other hand, if we choose a; = j~2(*+1)=1 then for any ¢ > 1 we have

I gl e, 1o 7y = +oo.

2. Solvability conditions and Carleman formula

If the surface T' and the data of the problem are real analytic then the Cauchy-Kowalevski
Theorem implies that problem (2), (4) has at most one solution in the class of (even formal)
power series. However the theorem does not imply the existence of solutions to Problem 1 because
it grants the solution in a small neighbourhood of the (analytic) surface I'r only (but not in a
given domain Qp!). We begin this section proving that Problem 1 can not have more than one
solution in the spaces of differentiable (non-analytic) functions.

To investigate Problem 1, we use an integral representation constructed with the use the
fundamental solution to heat operator L, see, for instance, [13, 17]:

=2

e 4pt .
B(x,t) = { Pvmre)” ift >0,

0 itt<O0.

Consider the cylinder type domain Qr, 17, = Qp, \ Qp, with 0 < Ty < T and a closed
measurable set S C 9. For functions f € C(Qp, 1,), v € C(Sr), w € C(St), h € C(Qp, 1,) We
introduce the following potentials:

th@ﬁ=/@®—wmmﬂM%(hﬂm®ﬁ=//ﬂwwﬁ—ﬂﬂwwwﬂ
T Q

Q 1

&nw@w://@u—%rwwmﬂw@m,
T, S

w@mmuw:—//@ﬁ@—%wwmwﬂ@@w,
T S

(see, for instance, [12, Ch. 4, §1], [13, Ch. 1, §3 and Ch. 5, §2], [16, Ch. 3, §10]). The potential
Iq 1, (h) is sometimes called Poisson type integral and the functions Go 1, (f), Vs, (v), Ws,r, (w)
are often referred to as heat potentials or, more precisely, volume heat potential, single layer heat
potential and double layer heat potential, respectively. By the construction, all these potentials
are (improper) integrals depending on the parameters (z,t).

Next, we need the so-called Green formula for the heat operator.
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Lemma 1. For all 0 < Ty < Ty and all u € C*Y(Qp, 1,) N CYOQr, 1,) with Lu € C(Qp, 1)
the following formula holds:

u(xat)v (l‘,t) € QT1,T2
0, ($,t) g QT17T2

} = (Iﬂ,n (u) + Ga,1, (Lu) + Voo, (Ouu) + Waa T, (U)) (z,t).  (5)

Proof. See, for instance, [10], [20, Ch. 6, §12] (cf. also [21, Theorem 2.4.8] for more general linear
operators). O

As is known, the heat equation is hypoelliptic. Moreover, any C%!(Q7, 7,)-solution P to the
heat equation LP = 0 in the cylinder domain Qr, 7, belongs to C™°(Qp, 1,) and, actually P(z,t)
is real analytic with respect to the space variable z € Q for each ¢ € (T1,T3), see, for instance,
[17, Ch. VI, §1, Theorem 1]. Then Green formula (5) and the information on the kernel ®
provide us with a uniqueness theorem for Problem 1.

Theorem 1 (A uniqueness theorem). IfI" has at least one interior point in the relative topology
of 0X) then Problem 1 has no more than one solution.

Proof. See, for instance, [10, Theorem 1, Corollary 1]. O

Now we are ready to formulate a solvability criterion for Problem 1. As before, we assume
that I is a relatively open connected set of 2. Then we may find a set QT C R™ in such a way
that the set D = QU T U Q" would be a bounded domain with piece-wise smooth boundary. It
is convenient to set Q= = Q. For a function v on Dy we denote by v its restriction to Q; and,
similarly, we denote by v~ its restriction to Qp. It is natural to denote limit values of v* on
I'r, when they are defined, by vlj;T. Actually, a solvability criterion for Problem 1 was obtained
in [10]. In this section we would like to improve these results in order to invoke Hilbert space
methods. More precisely, the following theorem is a modification of [10, Theorem 2], related
to the use of anisotropic Holder spaces. Though the proofs of the theorems are very similar,
we obtain additional essential information about the solution to Problem 1 allowing us to use
anisotropic Sobolev spaces and so called bases with double orthogonality property.

Theorem 2 (Solvability criterion). Let A € (0,1), 9 belong to C*** and let T be a relatively
open connected subset of 9. If f € COOMN2(Qp), up € CLONN2(TT), uy € COONN2(Ty)
then Problem (2), (4) is solvable in the space C>1 M 2(Qp) N CLOANA2(Qp UTT) if and only if
there is a function F' € C°°(Dr) satisfying the following two conditions: 1) LF =0 in Dr, 2)
F = GQ’()(]C) + ViO(UQ) + vao(ul) mn Q;

Proof. Necessity. Let a function u(z,t) € C>1AN2(Qr)NCLOAN2(Qr UT ) satisfy (2), (4).
Clearly, the function u(z,t) belongs to the space C*1**/2(QL,) for each cylindrical domain €,
with such a base Q' that Q' C Q and &’ N 9Q C I. Besides, Lu = f € CO0MV2(Q). Without
loss of the generality we may assume that the interior part I’ of the set €’ N 92 is non-empty.
Consider in the domain Dt the functions

F = Gaolf) + Vg oluz) + Wg o(u1) and F = F — xo,u, (6)

where s is the characteristic function of a set M C R™!. By the very construction condition
2) is fulfilled for it. Note that xo,u = xq;u in Dy, where D" = Q" UT" U Q7. Then Lemma 1
yields

F=Gaao(f) + Vi ou2) + W o(u1) = Iaro(u) in D7 (7)

Arguing as in the proof of Theorem 1 we conclude that each of the integrals on the right-hand
side of (7) is smooth outside the corresponding integration set and each satisfies homogeneous
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heat equation there. In particular, we see that F' € C°°(D}.) and LF = 0 in D/ because of [17,
Ch. VI, §1, Theorem 1]. Obviously, for any point (z,t) € D there is a domain D/, containing
(z, t). That is why LF = 0 in Dp, and hence F belongs to the space C°°(Dr). Thus, this
function satisfies condition 1), too.

Sufficiency. Let there be a function F' € C*°(Dr), satisfying conditions 1) and 2) of the
theorem. Consider on the set Dr the function

U=F-F. (8)
As f € CO0MN2(Qr) then the results of [12, Ch. 4, §§11-14], [13, Ch. 1, §3] imply
GQ,O(f) c CQ,l,A,A/Q(ﬁ) n Cl,O,)\,A/2(DT) (9)

and, moreover,
LGqo(f) = [ in Qr, EGao(f) =0in QF. (10)
Since uy € C%0MA/2(T'7) then the results of [12, Ch. 4, §§11-14], [13, Ch. 5, §2] yield
Vi olug) € C®(Q7) NCHYOA2(QF UT) ),  LVpo(uz) =0 in Qp UQT. (11)

On the other hand, the behaviour of the double layer potential Wy (1) is similar to the be-
haviour of the normal derivative of single layer potential Vi ,(u;). Hence

Wr o(u1) € C(Q5) NCOOM2(QF UT)r),  LWEo(u1) =0 in Qr UQT. (12)

Lemma 2. Let S C T € C* . Ifu; € CY*ANTr), then the potential WZ (u1) belongs to the
space CLONN2(Qp U St) if and only if W;O(Ug) € CLOANZ(QE U Sy).

Proof. Tt is similar to the proof of the analogous lemma for Newton double layer potential
(see, for instance, [6, lemma 1.1]). Actually, one needs to use Lemma 1 instead of the standard
Green formula for the Laplace operator, see [10, Lemma 2] for a different function class. O

Since F € C*°(Dg) C CHOANM2((QF UT)r) then it follows from the discussion above that
W (uz) € CHOAA2((QF UT)7). Thus, formulas (8)-(12) and Lemma 2 imply that U belongs

02,71)\,)\/2(9%) n Cl,O,A,A/2((Qﬂ: U F)T) and
LU = xp,fin QrUQF.
In particular, (2) is fulfilled for U~. Let us show that the function U~ satisfies (4). Since
F € C*(Dr) we see that 9“F~ = 9*F* on 't for @ € Z with |a| < 1 and
0 Ff, = (0°GE o) + 0"V (ua) + 0° W () .

It follows from formulas (9) and (11) that the volume potential G;)_,o( f) and the single layer
potential Vf‘L ,(u2) are continuous if the point (z,¢) passes over the surface I'r. Then

Ity = WEO(Ul)\FT - W%O(Ul)\FT =u.

because of the theorem on jump behaviour of the double layer potential Wf,o(ul) (see, for
instance, [13, Ch. 5, §2, theorem 1] for the corresponding heat potential), i.e. equality the first
equation in (4) is valid for U~.

Formula (9) means that that the normal derivative of the volume potential Gg,o( f) is con-
tinuous if the point (z,t) passes over the surface I'y. Therefore

8VU\FT = 8VVF_70(U2)|FT - 8VVFTO(U2)|FT + aqu_,o(ul)\FT - aI/WfJ’:O(ul)|FT' (13)
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By theorem on jump behaviour of the normal derivative of the single layer potential (see, for
instance, [16, Ch. 3, §10, theorem 10.1] for the corresponding heat potential),

auvf_,o(uQ)‘FT - aVVf-’,_O(UQ)‘FT = U2. (14)

Finally, we need the following lemma.

Lemma 3. Let T' € C'** and uy € COONN2(Ty). If Wz (u1) € CLOAA2((QUT)r) or
W{O(Ul) € CI’O’A’/\/Q((QJF U F)T) then

BL/W{O(ul)\FT — 8VWgO(u1)|FT =0. (].5)

Proof. Tt is similar to the proof of the analogous lemma for the the heat double layer potential
(see, for instance, [10, lemma 3] for a different function class). O
Using lemma 3 and formulas (13), (14), we conclude that 9,Uf, = ua, ie. the second
equation in (4) is fulfilled for U~. Thus, function u(z,t) = U~ (x,t) satisfies conditions (2), (4).
The proof is complete. O
We note that both [10, Theorem 2] and Theorem 2 are analogues of Theorem by Aizenberg and
Kytmanov [5] describing solvability conditions of the Cauchy problem for the Cauchy—Riemann
system (cf. also [6] in the Cauchy Problem for Laplace Equation or [8] in the Cauchy problem
for general elliptic systems). Formula (8), obtained in the proof of Theorem 2, gives the unique
solution to Problem 1. Clearly, if we will be able to write the extension F' of the sum of potentials
Gao(f) + Vi o(u2) + Wg o(u1) from QF onto Dr as a series with respect to special functions or
a limit of parameter depending integrals then we will get Carleman-type formula for solutions
to Problem 1 (cf. [5]). The simplest formulas of this type for the Cauchy-Riemann system was
constructed by Goluzin and Krylov, see [22] or [4], for the special domains (the so-called "lunes",
i.e. parts of a disc Q on the complex planes, separated from the origin by a smooth curve
' € Q). Aizenberg and Kytmanov [5] supplement the Goluzin—Krylov formula with a simple
solvability criterion for the Cauchy problem for holomorphic functions in the lunes based on the
Cauchy—Hadamard formula for power series. Let us extend this approach for the case n = 1.
With this purpose we introduce the following Carleman kernels:

N

(2y)" I (=1)(t — 1)
k:o m;k (4p)™(m — j)!5!

0<j<m

Q:N(.I,y,t*T):@(l'*y,th) ya

Corollary 1. Letn=1,a >0, Q= (a,1) and D = (—1,1). Under the hypotheses of Theorem
2, Problem 1 is solvable in the space C>1 AN 2(Qp) N CHOAN2(Qp UTy) if and only if

1/k
lim sup (|ck(t)|> <1 for each t € (0,T)

k—o0

where c(t) are the Taylor coefficients of the function F(x,t) with respect to the variable x at the
origin for fived value t € (0,T) given by (19) below. Besides, the solution, if exists, equals to

N~>+oo

u(z,t) lim //QﬁN x,y,t )f(y,T)dydTJr/t/QfN(x,y,tT)uQ(y,T)ds(y)dT+ (16)
0T

//6,,(y)¢N(x,y,t—T)Ul(y,T)dS(y)dT
0T
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Proof. The first part of the corollary follows immediately from Theorem 2, formula (8) for the
solution to Problem 1 and the Cauchy-Hadamard formula for the radius of the convergence of a
power series. In particular,

U(z,t) = ]\}lm ( ch )7 (z,t) € Qp. (17)

On the other hand, we may write easily the Taylor series with respect to the variable x near the
origin for the kernel ®(x —y,t —7) if t > 7:

zy—a? ©
(I)(I _yvt_T) = (I)(yat_T)eiuz!tir) = Z(I)k(yvt_T)xk (18)
k=0

where the series converges uniformly on the compacts in the set {|z| < a,y € Q,t > 7 > 0} and

(I)k(yat - T) =

O(y,t — 1) > Cy)m (1)t —7)
t—F | .2 @mim— )y
0<j<m
As y € Q then y # 0 and the kernels ®(y,t — 7) and 9, Pk (y,t — 7) are integrable over
subsets of Qp. Thus, using (6), after termwise integration of the Taylor series (18), we identify
the Taylor coefficients c(t) as follows:

O (y,t—7)f(y, 7)dydr <I> Jt=T)ua(y, 7)+ 0, Pr(y, t—)us (y, 7) ) ds(y)dr.
O//ky yy+// k(Y 20y, 7))+ 0, P (y y)

(19)
Finally, combining formulas (6), (17), (19), we arrive at Carleman-type formula (16). O

For n > 1 the situation differs drastically because of the nature of the multi-dimensional
Cauchy-Hadamard formula for multiple power series. Instead, for the multidimensional Cauchy-
Riemann system Aizenberg and Kytmanov [5] suggested to use Hilbert space theory and the
so-called bases with the double orthogonality property (cf. [6], [8], [7] for elliptic systems).

Following this idea, we assume that the surface 92 and that the data u; are smoother than
in Theorem 2. Namely, we need the following lemma.

Lemma 4. Let 90 € C3*t* and let T be a relatively open subset of OQ with boundary OT' € C*+*,
If up € C*YAN2(Tr), ug € C2VANN2(Tr) then there emist functions @; € O A 2(007) such
that 4; = u; on Tr, j=1,2 and a function @ € C>1M )‘/Q(QT) such that @ = @1 on (0Q)r and
0,4 =tz on (OQ)r.

Proof. We may adopt the standard arguments from [23, Lemma 6.37] related to isotropic spaces.
Indeed, according to it, under our assumptions, for every vy € C**(T') there is v € C**(9Q)
such that v = vy on I'. The construction of the extension involves the rectifying diffeomorphism
of 9I" and a suitable partition of unity of a neighbourhood of dI', only. Thus, we conclude there
are functions @; € C2'A/2(9Qr) such that 4; = u; on Ty, j = 1,2.

Next, we use the existence of the Poisson kernel Paz o(z,y) for the Dirichlet problem related
to the operator A2, see [24]. It is known that the problem is well-posed over the scale of Holder
spaces in €. Namely, as 9Q € C3*, for each 1 < s < 3 and vy € C**(99). vy € C*~1(9Q) the
integral

'PAz,Q(Ul, 1}2)(.’1}) = /

((Bu) Paz ) 901 (1) + Pz o, ) (9) ) ds(y)
o0

— 8 —
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belongs to C**(Q) and satisfies A2v = 0 in Q and v = vy, 0,v = v5 on 9. Now, we may set
(x,t) = Paz,o(t1(-,1),0)(z) + Paz (0, da(-, 1)) (x).

Then the first integral belongs to C?*(Q) and the second belongs to C**(2) with respect to the
variable z for each ¢ € [0,T]. By the construction, a(-,t) = @;(-,t) on 9Q and 9, u(-,t) = Uz(-,t)
on O for each t € [0,T]. It remains to check that @ belongs to C*'**/2(Q7) as the sum of
integrals depending on the parameter (z,t) € Q7. O

The statements of such type actually reflect the fact that the system of boundary operator,
related to the investigated problem, is compatible. In the theory of elliptic operators this means
that the system {I,0,} is a Dirichlet system on T, see, for instance, |7, §]. For example, under
the assumptions of Lemma 4, for each pair v; € C?*(T') and vy € CYA(T) there is v € C**(Q)
such that v =v; on T and 0,v = v2 on I'. In Lemma 4 we use smoother data us on I'; because
the heat operator under the consideration is not elliptic and the behaviour with respect to the
variable ¢t can not be improved by actions with respect to the variable x.

Under the assumptions of Lemma 4, we set

F = Gaolf) + Vago(fiz) + Wag,o(ti1) + Ino(@). (20)

Corollary 2. Let A € (0,1), 99Q belong to C3** and let T be a relatively open connected subset
of O with boundary OT € C*H . If f € COOMN2(Qr), uy € CPIANA(Tr), ug € C2VAN2(Ty)
then Problem (2), (4) is solvable in the space C>1 A 2(Qp) N CLOAN2(Qr UTr) N H>Y Q) if
and only if there is a function F € C°°(Dy) N H>Y(Dy) satisfying the following two conditions:
1’) LE =0in Dy, 2)) F = F in Q.

Proof. First of all, we note that, by Green formula (5), we have F = Goo(f — Lu) and then
F € C21AN2(QF) because of (9). On the other hand,

F = F = Vaarr,o(iiz) + Waar o(iia) + Io,o(i). (21)

This means that the function F — F satisfies the £(F — F) = 0 in Dy and hence the function
F extends to Dy as a solution of the heat equation if and only if function F extends to Dy as
a solution of the heat equation, too.

Let Problem (2), (4) be solvable in the space C>1AA/2(Qr) NCHOAN2(Qp UT ) NH? Q).
Then formulas (6) and (21) imply

F=F —xa,uc H*'(QF) and LF =0 in Dr.

Now, as F' € H>'(Q%) N C>®(Dr) (see [17, Ch. VI, §1, Theorem 1]) we conclude that F €
H?Y(Dr), i.e. conditions 1), 2’) of the corollary are fulfilled.

If conditions 1’), 2) of the corollary hold true then conditions 1), 2) of Theorem 2 are fulfilled,
too. Moreover, formulas (8) and (21) imply that in D7 we have

U=F—-F=F-FecH>(0F) (22)

and the U~ is the solution to Problem 1 in the space C21MA2(Qp)NCHOAN2(QpUD ) H2H(QF)
by Theorem 2. O

Let us describe the way for the construction of the bases with the double orthogonality
property related to Problem 1. For s € Z,, denote by HES’S(QT) the space of weak (i.e. in the
sense of distributions) solutions to the heat equation (2) belonging to H?%*(2). Obviously, it

is a closed subspace of H?**(Q7).
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Lemma 5. Let w be a subset of D with piece-wise smooth boundary. There exists an orthonormal
basis {b,} in the space Hy'(Dr) such that the system {byjwr } is an orthogonal basis in L7 (wr).

Proof. Indeed, by the definition the space H*!(Dr) is continuously embedded to L?(wr). As
any weak solution to the heat equation in D7 is a weak solution the heat equation in wp, too,
we conclude that HZ’l(DT) is continuously embedded to L%(w7). Let us denote by Rp,, the
corresponding embedding operator, Rp , : H%l(DT) — L2%(wr). By the construction, the range
of the operator R is dense in L% (wr).

Moreover, by Fubini Theorem the anisotropic Sobolev space HZ’l(DT) can be continuously
embedded to the Bochner type space B((0,T, H?(D),L?(D)) consisting of maps v : [0,T] —
H?(D) such that 9;v € L?(D), see [25, Ch 1, §5]. According to the Kondrashov Theorem, the em-
bedding H?(D) — L?(D) is compact. Applying famous compactness theorem for Bochner type
spaces (see, for instance, [25, Ch 1, §5, Theorem 5.1] we see that the space B((0,T, H*(D), L?(D))
is embedded compactly to L?((0,T), D) = L?(Dr). Thus, the space H[%’l(DT) is embedded com-
pactly to L%(Dr) and then to L%(wr), i.e. the operator Rp, is compact.

Let R}, , be the Hilbert space adjoint operator for Rp, i.e. R}, : LA (wr) — H Y(Dr).
Then the Hllbert Schmldt spectral theorem grants the existence of an orthonormal ba51s {b}
in the space H (DT) consisting of the eigen-vectors of the compact self-adjoint operator
Ry Rpw : Hf:’l(DT) — H2'(Dr). Finally, applying we see that the system {b,} is the basis
with the double orthogonality property, we are looking for, see [7, Example 1.9]. O

Let w be a relatively compact subset of QT C D with piece-wise smooth boundary and let
{b,} be the basis with the double orthogonality property granted by Lemma 5. We introduce
now the following Carleman kernels:

N
th:;})(ﬂfay,tﬁ) = (I)(CE - yath) - Z (bv(xﬂt)/ bV(Z,’]N')(I)(Z - va - T)dZdT>/Hb ”L2 (WT)
v=0 wr

Also, let ¢, (F) be the Fourier coefficients of the function F with respect to the orthogonal basis
{by|wr } in the space L% (wr):

) = ([ BEAFC ) I, (23)

Corollary 3. Let w be a relatively compact subset of QF with piece-wise smooth boundary.
Under assumptions of Corollary 2, Problem (2), (4) is solvable in the space C>V 2(Qr) N
CHONA2(Qp UT ) N H?Y(Qr) if and only if

> le(F)P

Besides, the solution, if exists, is given by

u(z,t) = lim / / & (2 y,t,7) fly, T)dydr + / / ¢ (2, y,t, T)iia(y, T)ds(y)dr+  (24)

N—H—oo

t

/ / 6y(y)cs\‘}’) (x,y,t, 7)1 (y, 7)ds(y)dr

0 9Q

— 10 —
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Proof. Again, we note that the heat operator is hypoelliptic, i.e. all weak L?(Qr)-solutions to the
homogeneous heat equations are in fact the smooth ones in 7. This means that H 2’I(QT) =

HZ'(Qr) N C®(Qr). Then [17, Ch. VI, §1, Theorem 1] implies that conditions r), 2’) of
Corollary 2 are equivalent to the following one: F = F in wy, or, the same, Rp wF F. Thus,
the first statement of the corollary follows immediately from Lemma 5 and [7 Example 1.9]. On
the other hand, according |7, Example 1.9], if F' € H[2: '(Dr) is the extension of the function F

from wr to Dr then
o0

F=> c,(Fby(x,1), (x,t) € Dr.
v=0
Therefore, (22) yields
u(e,t) = lim (ﬁ(x,t) -y c,,(]:")bl,(x,t)), (z,1) € Q7. (25)

v=0

We note that if y € Q@ and € w then x # y and the kernel ®(z — y,t — 7) is integrable over
Qr x Qr. Thus, we may use integral formula (20) for F and Fubini Theorem in order to change
the order of the integrations in (23). Hence it follows from (25) that (24) holds true. O

Example 2. What is still lacking is an example of a basis with the double orthogonality property
granted by Lemma 5 for a pair D and w. However we may easily give an example of a system
with the double orthogonality. Indeed, for each multi-index k& € Z™ we set

n n
bV (2, 1) = e HIFI* cog (27r Z k;jmj), b (2, 1) = e~ HIFt gin (271' Z ij])

j=1 j=1

where |k|? = Z] 1k]2 Then Eb,(j) = 0 in R™ x (0,7) for each k € Z"™ and the system

{bg),b,(f)}kezn is orthogonal in L?*(Q,; x (0,T)) for every cube @, , j € N, and T > 0
because the trigonometrical system is orthogonal on the cube @, and it is periodic. Thus,
{bl(i,l),b,(f)}kezn is a system with the double orthogonality property for any pair D = @, ; and
w = Qn,, if j > [. Unfortunately, this system can not be complete in H*'((Q, ;)7) because

each function b, has equal values on the opposite faces of the cube @, ; and the elements of the
space H*((Qn,;)r) admit traces on (9Q., ;)7.

We note also that the scheme, realized in the paper, is valid for a more general parabolic
operator £, too, if it admits a fundamental solution with the following properties: the analyticity
with respect to x for each fixed ¢ and the proper behavior of the corresponding integrals I, Ggq,
Vaq and Wg on the scale of the (anisotropic) Holder spaces (see, for example, [13, 26] for the
conditions providing the existence of such kernels).

The work was supported by the Ministry of Education and Science of the Russian Federation
N 1.2604.2017/PCh.
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O dopmynax KapiemaHOBCKOro Tuiia JJjigd pelneHnii ypaBHe-
HU TEIJIOIPOBOIHOCTH

Naba A. KypuaeHKo
Anekcanap A.IllnanyHosB

Mol npumensem mMemMod UHMEZPANLHOLEL NPEICMaseHUT K UCCAEI08aHUN HeKoppekmHuol 3adavu Kowu
O0AA YPABHEHUA MENAoNPosodnocmu. Boaee mouno, ucnoavsys nodrodawyro gopmyay I'puna, Mo eoc-
CMAHOBAUBAEM KOMNAEKCHOZHAYHYW GYHKUUI, YI0BAEMEOPAIOULYH YPAEHEHUN MENAONPOSOOHOCTNY 6
YUuAuUHIpe, No 3a0aHHBM €€ SHAYEHUAM U 3HAYEHUAM €€ HOPMAALHOUT NPou3eodHot Ha wacmu 00K060U
noePTHOCMU YuAUHIPa. Mo, noxasweaem, 4mo 360046 ABAAEMCA HEKOPPEKMHOT 6 ECTNECTNEEHHHLT OAA
nee (anusnmponuoz) npocmpancmeax (Cobosesa, I'eavdepa u m.d.). B umoze, namu nosyerns, meopema
eduncmeennocmu 0as 3adawu Kowu, a maxoce Heobxodumvie U d0CMaAMOUHLE YCAOBUA €€ PA3PEUUMO-
cmu v GopMYAG KAPAEMAHOBCKO20 MUNG OAA €€ PEULEHUA.

Karwuesvie caosa: ypasnerue menionposodrociny, HeKoppesmmoe 3a0a4u, Memod wHIMEeZpasbHuLT nped-
cmasaenutl, gopmyas, Kapaemana
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