Explicit Formula for Sums Related to the Generalized Bernoulli Numbers
Author:
Brahim Mittou
Брахим Митту
Date:
2023-02Journal Name:
Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physics 2023 16 (1)Abstract:
Let be a Dirichlet character modulo a prime number p > 3 and let Bm( ) (m = 1; 2; : : :)
be the generalized Bernoulli numbers associated with . Explicit formulas for the sums:
Σ
mod p
(1)=+1; ̸= 0
Bm( )Bn( ) and
Σ
mod p
(1)=1
Bm( )Bn( )
are given in this paper. Пусть — характер Дирихле по модулю простого числа p > 3, а Bm( ) (m = 1; 2; : : :)
— обобщенные числа Бернулли, связанные с . Явные формулы для сумм:
Σ
mod p
(1)=+1; ̸= 0
Bm( )Bn( ) и
Σ
mod p
(1)=1
Bm( )Bn( )
приведены в этой статье
Collections:
Metadata:
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Generalized Bernoulli Numbers and Polynomials in the Context of the Clifford Analysis
Chandragiri, Sreelatha; Shishkina, Olga A.; Чандрагири, Шрилата; Шишкина, Ольга А (Сибирский федеральный университет. Siberian Federal University, 2018-05)In this paper, we consider the generalization of the Bernoulli numbers and polynomials for the case of the hypercomplex variables. Multidimensional analogs of the main properties of classic polynomials are proved -
Multidimensional Analog of the Bernoulli Polynomials and its Properties
Shishkina, Olga A.; Шишкина, Ольга А. (Сибирский федеральный университет. Siberian Federal University., 2016-07)We consider a generalization of the Bernoulli numbers and polynomials to several variables, namely, we define the Bernoulli numbers associated with a rational cone and the corresponding Bernoulli polynomials. Also, we ... -
Generalized Bernoulli numbers and polynomials in the context of the Clifford analysis
Sreelatha, Chandragiri; Olga A. Shishkina (2018) -
A Note on Explicit Formulas for Bernoulli Polynomials
Khaldi, Laala; Bencherif, Farid; Derbal, Abdallah; Халди, Лаала; Беншериф, Фарид; Дербал, Абдалла (Сибирский федеральный университет. Siberian Federal University, 2022)For r 2 { 1; - 1; 1 2 } , we prove several explicit formulas for the n-th Bernoulli polynomial Bn (x), in which Bn (x) is equal to a linear combination of the polynomials xn, (x + r)n ; : : : ; (x + rm)n, where m ...