Stability of exact solutions describing two-layer flows with evaporation at the interface
Скачать файл:
URI (для ссылок/цитирований):
http://iopscience.iop.org/article/10.1088/0169-5983/48/6/061408https://elib.sfu-kras.ru/handle/2311/69741
Автор:
Бекежанова, Виктория Бахытовна
Гончарова, Ольга Николаевна
Коллективный автор:
Институт математики и фундаментальной информатики
Базовая кафедра математического моделирования и процессов управления
Дата:
2016-11Журнал:
Fluid Dynamics ResearchКвартиль журнала в Scopus:
Q2Квартиль журнала в Web of Science:
Q4Библиографическое описание:
Бекежанова, Виктория Бахытовна. Stability of exact solutions describing two-layer flows with evaporation at the interface [Текст] / Виктория Бахытовна Бекежанова, Ольга Николаевна Гончарова // Fluid Dynamics Research. — 2016. — Т. 48 (№ 6). — С. 061408(1)-061408(25)Аннотация:
A new exact solution of the equations of free convection has been constructed in
the framework of the Oberbeck–Boussinesq approximation of the Navier–Stokes
equations. The solution describes the joint flow of an evaporating viscous heatconducting
liquid and gas-vapor mixture in a horizontal channel. In the gas phase
the Dufour and Soret effects are taken into account. The consideration of the exact
solution allows one to describe different classes of flows depending on the values
of the problem parameters and boundary conditions for the vapor concentration.
A classification of solutions and results of the solution analysis are presented. The
effects of the external disturbing influences (of the liquid flow rates and longitudinal
gradients of temperature on the channel walls) on the stability characteristics
have been numerically studied for the system HFE7100-nitrogen in the
common case, when the longitudinal temperature gradients on the boundaries of
the channel are not equal. In the system both monotonic and oscillatory modes
can be formed, which damp or grow depending on the values of the initial
perturbations, flow rates and temperature gradients. Hydrodynamic perturbations
are most dangerous under large gas flow rates. The increasing oscillatory perturbations
are developed due to the thermocapillary effect under large longitudinal
gradients of temperature. The typical forms of the disturbances are shown.