ON THE DE RHAM COMPLEX ON A SCALE OF ANISOTROPIC WEIGHTED HOLDER SPACES
View/ Open:
URI (for links/citations):
http://semr.math.nsc.ru/cont.htmlhttps://elib.sfu-kras.ru/handle/2311/142671
Author:
Шлапунов, Александр Анатольевич
Гагельганс, Ксения Владимировна
Corporate Contributor:
Институт математики и фундаментальной информатики
Кафедра теории функций
Date:
2020-03Journal Name:
Siberian Electronic Mathematical ReportsJournal Quartile in Scopus:
Q3Bibliographic Citation:
Шлапунов, Александр Анатольевич. ON THE DE RHAM COMPLEX ON A SCALE OF ANISOTROPIC WEIGHTED HOLDER SPACES [Текст] / Александр Анатольевич Шлапунов, Ксения Владимировна Гагельганс // Siberian Electronic Mathematical Reports. — 2020. — Т. 17. — С. 428-444Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.
Abstract:
We obtain a solvabilty criterion for the operator equations induced by de Rham differentials on a scale of anisotropic weighted Holder spaces on the strip Rⁿ × [0; T], n ≥ 1, where the weight controls the behavior of elements at the infinity point with respect to the space variables. Besides, we give a description of the closures in these space of the set of infinitely differentiable functions on the strip Rⁿ × [0; T] that are compactly supported with respect to the space variables. The results are applied to study the properties of the famous Leray-Helmholtz projection from the theory of the Navier-Stokes equations on the scale of these weighted spaces for n ≥ 2.