The non-parametric algorithm of omissions filling in stochastic data
URI (for links/citations):
http://sib-publish.ru/?tech12&ruhttps://elib.sfu-kras.ru/handle/2311/128491
Author:
Корнеева, А. А.
Чжан, Е. А.
Денисов, М. А.
Медведев, А. В.
Кукарцев, В. В.
Тынченко, В. В.
Corporate Contributor:
Институт космических и информационных технологий
Институт нефти и газа
Базовая кафедра интеллектуальных систем управления
Кафедра информатики
Кафедра технологических машин и оборудования нефтегазового комплекса
Date:
2019-10Journal Name:
Journal of Physics: Conference SeriesJournal Quartile in Scopus:
Q3Journal Quartile in Web of Science:
без квартиляBibliographic Citation:
Корнеева, А. А. The non-parametric algorithm of omissions filling in stochastic data [Текст] / А. А. Корнеева, Е. А. Чжан, М. А. Денисов, А. В. Медведев, В. В. Кукарцев, В. В. Тынченко // Journal of Physics: Conference Series. — 2019.Abstract:
The paper presents the results of an algorithm for data processing. In the initial data omissions may occur, due to different control discreteness of input and output variables. The paper proposes a non-parametric algorithm for filling gaps. The basic idea is to calculate the non-parametric estimate of the regression function from observations obtained from the object. This allows to use all available measurements. Numerous computational experiments have shown that the use of the proposed algorithm has improved the quality of the resulting model several times. The algorithm is influenced by such parameters as the total number of omissions in the sample of observations, measurement interference in communication channels, and the type of object. It should be noted that the developed algorithm is universal and does not depend on the type of equation of the object.