Show simple item record

Aleksandrov, Alexandr G.
Tsikh, Avgust K.
2008-05-13T05:22:58Z
2008-05-13T05:22:58Z
2008-04-14
https://elib.sfu-kras.ru/handle/2311/710
We construct a complex of sheaves of multi-logarithmic differential forms on a complex analytic manifold with respect to a reduced complete intersection; and define the residue map as a natural morphism from this complex onto the Barlet complex of regular meromorphic differential forms: It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.en
406362 bytes
application/pdf
enen
Сибирский федеральный университет. Siberian Federal Universityen
Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physicsen
2008 1 (2)en
complete intersectionen
multi-logarithmic differential formsen
regular meromorphic differential formsen
Poincar'e residueen
logarithmic residueen
Grothendieck dualityen
residue currenten
Multi-Logarithmic Differential Forms on Complete Intersectionsen
Journal Article
Published Journal Article
Alexandr G.Aleksandrov: Institute of Control Sciences,Russian Academy of Sciences,Profsoyuznaya 65, Moscow, 117997,Russia, e-mail: alexandr@ipu.rssi.ru; Avgust K.Tsikh: Institute of Mathematics, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia, e-mail: tsikh@lan.krasu.ru
105-124
https://elib.krasu.ru/bitstream/2311/710/1/alexandrov_tsikh.pdf


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV