Show simple item record

Aleksandrov, Alexandr G.
Tsikh, Avgust K.
We construct a complex of sheaves of multi-logarithmic differential forms on a complex analytic manifold with respect to a reduced complete intersection; and define the residue map as a natural morphism from this complex onto the Barlet complex of regular meromorphic differential forms: It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.en
406362 bytes
Сибирский федеральный университет. Siberian Federal Universityen
Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physicsen
2008 1 (2)en
complete intersectionen
multi-logarithmic differential formsen
regular meromorphic differential formsen
Poincar'e residueen
logarithmic residueen
Grothendieck dualityen
residue currenten
Multi-Logarithmic Differential Forms on Complete Intersectionsen
Journal Article
Published Journal Article
Alexandr G.Aleksandrov: Institute of Control Sciences,Russian Academy of Sciences,Profsoyuznaya 65, Moscow, 117997,Russia, e-mail:; Avgust K.Tsikh: Institute of Mathematics, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia, e-mail:

Files in this item


This item appears in the following Collection(s)

Show simple item record

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV