Author | Shahryari, Mohammad | en |
Author | Шахриари, Мохаммад | ru_RU |
Accessioned Date | 2017-07-18T06:21:04Z | |
Available Date | 2017-07-18T06:21:04Z | |
Issued Date | 2017-09 | |
URI (for links/citations) | https://elib.sfu-kras.ru/handle/2311/33629 | |
Abstract | We obtain a necessary and sufficient condition for an algebraic set in a group to have a fully character-
istic radical. As a result, we see that if the radical of a system of equation S over a group G is fully
characteristic, then there exists a class X of subgroups of G such that elements of S are identities of X | en |
Abstract | Получено необходимое и достаточное условие того, чтобы алгебраическое множество в группе
имело вполне характеристический радикал. В результате показано, что если радикал системы
уравнений S над группой G является вполне характеристическим, то существует такой класс
X подгрупп в G, что элементы из S — тождества X. | ru_RU |
Language | en | en |
Publisher | Сибирский федеральный университет. Siberian Federal University | en |
Subject | algebraic structures | en |
Subject | equations | en |
Subject | algebraic set | en |
Subject | radical ideal | en |
Subject | fully invariant congruence | en |
Subject | fully characteristic subgrou | en |
Subject | алгебраические структуры | ru_RU |
Subject | уравнения | ru_RU |
Subject | алгебраическое множество | ru_RU |
Subject | радикальный идеал | ru_RU |
Subject | вполне инвариантная конгруэнция | ru_RU |
Subject | вполне характеристическая подгруппа | ru_RU |
Title | Algebraic Sets with Fully Characteristic Radicals | en |
Alternative Title | Алгебраические множества с вполне характеристическими радикалами | ru_RU |
Type | Journal Article | |
Type | Published Journal Article | |
Contacts | Shahryari, Mohammad: Faculty of Mathematical Sciences University of Tabriz 29 Bahman Blvd, Tabriz, 5166616471 Iran; mshahryari@tabrizu.ac.ir | en |
Contacts | Шахриари, Мохаммад: Факультет математических наук Университет Табриза Бахман бульвар, 29, Табриз, 5166616471 Иран | ru_RU |
Pages | 293–297 | ru_RU |
Journal Name | Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physics;2017 10 (3) | en |