The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms
View/ Open:
URI (for links/citations):
https://link.springer.com/article/10.1134/S1064562418010088https://elib.sfu-kras.ru/handle/2311/110827
Author:
Levchuk, V. M.
Corporate Contributor:
Институт математики и фундаментальной информатики
Кафедра алгебры и математической логики
Date:
2018Journal Name:
Doklady MathematicsJournal Quartile in Scopus:
Q2Journal Quartile in Web of Science:
Q3Bibliographic Citation:
Levchuk, V. M. The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms [Текст] / V. M. Levchuk // Doklady Mathematics. — 2018. — Т. 97 (№ 1). — С. 23-27Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.
Abstract:
The enveloping algebra of the niltriangular subalgebra NΦ(K) of the Chevalley algebra of type An−1 is the algebra of niltriangular n × n matrices over K. The enveloping algebras R of other types constructed so far are nonassociative. For classical types, an explicit description of automorphisms of the rings R over any commutative associative ring with an identity is given; in the case where K is a field, all ideals in R are also listed. The enumeration of ideals in R for K = GF(q) leads to a solution of a combinatorial problem concerning ideals of the algebras NΦ(K).