• русский
    • English
  • English 
    • русский
    • English
    View Item 
    •   DSpace Home
    • Публикации сотрудников
    • Статьи в научных журналах (эффективный контракт)
    • View Item
    •   DSpace Home
    • Публикации сотрудников
    • Статьи в научных журналах (эффективный контракт)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Greedy heuristic algorithm for solving series of EEEcomponents classification problems

    Thumbnail
    View/Open:
    mse_122_1_012011.pdf (1019. Kb)
    Link to Another Site
    DOI:
    10.1088/1757-899X/122/1/012011
    URI (for links/citations):
    http://elib.sfu-kras.ru/handle/2311/27972
    Author:
    Kazakovtsev, L. A.
    Antamoshkin, A. N.
    Fedosov, V. V.
    Corporate Contributor:
    Институт управления бизнес-процессами и экономики
    Кафедра экономики и информационных технологий менеджмента
    Date:
    2016
    Journal Name:
    IOP Conference Series: Materials Science and Engineering
    Journal Quartile in Scopus:
    без квартиля
    Bibliographic Citation:
    Kazakovtsev, L. A. Greedy heuristic algorithm for solving series of EEEcomponents classification problems [Текст] / L. A. Kazakovtsev, A. N. Antamoshkin, V. V. Fedosov // IOP Conference Series: Materials Science and Engineering. — 2016. — Т. 122 (№ 012011). — С. 1-7
    Abstract:
    Algorithms based on using the agglomerative greedy heuristics demonstrate precise and stable results for clustering problems based on k- means and p-median models. Such algorithms are successfully implemented in the processes of production of specialized EEE components for using in space systems which include testing each EEE device and detection of homogeneous production batches of the EEE components based on results of the tests using p-median models. In this paper, authors propose a new version of the genetic algorithm with the greedy agglomerative heuristic which allows solving series of problems. Such algorithm is useful for solving the k-means and p-median clustering problems when the number of clusters is unknown. Computational experiments on real data show that the preciseness of the result decreases insignificantly in comparison with the initial genetic algorithm for solving a single problem.
    Collections:
    • Статьи в научных журналах (эффективный контракт) [2624]
    Metadata:
    Show full item record

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV