Show simple item record

Kazakovtsev, L. A.
Antamoshkin, A. N.
Fedosov, V. V.
2016-11-11T08:52:07Z
2016-11-11T08:52:07Z
2016
Kazakovtsev, L. A. Greedy heuristic algorithm for solving series of EEEcomponents classification problems [Текст] / L. A. Kazakovtsev, A. N. Antamoshkin, V. V. Fedosov // IOP Conference Series: Materials Science and Engineering. — 2016. — Т. 122 (№ 012011). — С. 1-7
http://elib.sfu-kras.ru/handle/2311/27972
Algorithms based on using the agglomerative greedy heuristics demonstrate precise and stable results for clustering problems based on k- means and p-median models. Such algorithms are successfully implemented in the processes of production of specialized EEE components for using in space systems which include testing each EEE device and detection of homogeneous production batches of the EEE components based on results of the tests using p-median models. In this paper, authors propose a new version of the genetic algorithm with the greedy agglomerative heuristic which allows solving series of problems. Such algorithm is useful for solving the k-means and p-median clustering problems when the number of clusters is unknown. Computational experiments on real data show that the preciseness of the result decreases insignificantly in comparison with the initial genetic algorithm for solving a single problem.
http://iopscience.iop.org/article/10.1088/1757-899X/122/1/012011
EEE components quality
classification
cluster analysis
getenic algorithm
Greedy heuristic algorithm for solving series of EEEcomponents classification problems
Journal Article
Published Journal Article
1-7
47.01.81
2016-11-11T08:52:07Z
10.1088/1757-899X/122/1/012011
Институт управления бизнес-процессами и экономики
Кафедра экономики и информационных технологий менеджмента
IOP Conference Series: Materials Science and Engineering
без квартиля


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record