Показать сокращенную информацию

Tsarev, Aleksandr
Kukharev, Andrei
2021-08-13T09:28:23Z
2021-08-13T09:28:23Z
2020-04
Tsarev, Aleksandr. Algebraic lattices of solvably saturated formations and their applications [Текст] / Aleksandr Tsarev, Andrei Kukharev // Boletin de la Sociedad Matematica Mexicana. — 2020.
00378615
https://link.springer.com/article/10.1007/s40590-020-00290-3
https://elib.sfu-kras.ru/handle/2311/142250
In each group G, we select a system of subgroups τ(G) and say that τ is a subgroup functor if G∈τ(G) for every group G, and for every epimorphism φ:A→B and any H∈τ(A) and T∈τ(B), we have Hφ∈τ(B) and Tφ−1∈τ(A). We consider only subgroup functors τ such that for any group G all subgroups of τ(G) are subnormal in G. For any set of groups X, the symbol sτ(X) denotes the set of groups H such that H∈τ(G) for some group G∈X. A formation F is τ-closed if sτ(F)=F. The Frattini subgroup Φ(G) of a group G is the intersection of all maximal subgroups of G. A formation F is said to be solvably saturated if it contains each group G with G/Φ(N)∈F for some solvable normal subgroup N of G. Composition formations are precisely solvably saturated formations. It is shown that the lattice of all τ-closed totally composition formations is algebraic.
Finite group
subgroup functor
formation of groups
satellite of formation
totally composition formation
algebraic lattice of formations
formal language
hypergroup
Algebraic lattices of solvably saturated formations and their applications
Journal Article
Journal Article Preprint
2021-08-13T09:28:23Z
10.1007/s40590-020-00290-3
Институт космических и информационных технологий
Кафедра прикладной математики и компьютерной безопасности
Boletin de la Sociedad Matematica Mexicana
Q4
Q4


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию