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Abstract. In each group G we select a system of subgroups τ(G) and say

that τ is a subgroup functor if G ∈ τ(G) for every group G, and for every
epimorphism ϕ : A → B and any H ∈ τ(A) and T ∈ τ(B), we have Hϕ ∈
τ(B) and Tϕ

−1 ∈ τ(A). We consider only subgroup functors τ such that for

any group G all subgroups of τ(G) are subnormal in G. For any set of groups
X the symbol sτ (X) denotes the set of groups H such that H ∈ τ(G) for some

group G ∈ X. A formation F is τ -closed if sτ (F) = F. It is shown that the

lattice of all τ -closed totally composition formations is algebraic.

1. Introduction

Subgroup functors are closely related to classes of algebraic systems [9, 13].
The concept of subgroup functor τ introduced by Skiba [13] turned out to be useful
in group theory. In each group G we select a system of subgroups τ(G) and say
that τ is a subgroup functor if

(1) G ∈ τ(G) for every group G;
(2) for every epimorphism ϕ : A → B and any H ∈ τ(A) and T ∈ τ(B), we

have Hϕ ∈ τ(B) and Tϕ
−1 ∈ τ(A).

If τ(G) = {G} then the functor τ is called trivial. For any set of groups X the
symbol sτ denotes the set of groups H such that H ∈ τ(G) for some group G ∈ X.

A class of groups F is called τ -closed if sτ (F) = F. For instance F is called s-
closed [6] (or hereditary) if it contains all the subgroups of G ∈ F (i.e., τ(F) = s(F)),
and sn-closed [6] (or normally hereditary) if it contains all the normal subgroups
of G ∈ F (i.e., τ(F) = sn(F)).

Formations extend the notion of a variety of finite groups.
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Definition 1.1. A formation is a class of finite groups F satisfying the following
two conditions: (1) if G ∈ F, then G/N ∈ F; and (2) if G/N1, G/N2 ∈ F, then
G/N1 ∩N2 ∈ F, for any N , N1, N2 E G.

A formation F is called τ -closed if τ(G) ⊆ F for every group G of F. In the
sequel, we will consider only subgroup functors τ such that for any group G all
subgroups of τ(G) are subnormal in G.

The theory of saturated formations introduced by Gaschütz [7] is a fundamental
part of the theory of finite groups. Composition formations form a broader than
saturated formations family of classes. By Baer’s theorem composition formations
are precisely solvably saturated formations [6, p. 373]. A formation F is said to be
solvably saturated [8] if it contains each group G with G/Φ(N) ∈ F for some solvable
normal subgroup N of G, and any saturated formation is solvably saturated.

An element a of a lattice Θ is compact [4] if a 6 ∨(xj | j ∈ S) holds for
a 6 ∨(xj | j ∈ J) and some finite subset S ⊂ J . We recall that a complete
lattice is algebraic if each its element is the union of some set of compact elements.
Safonov [11] proved that the lattice of all totally saturated formations is algebraic.
The lattice of all n-multiply composition formations is algebraic [15, 21], and the
following problem was solved in [17].

Question (see [15, Problem 1]). Is the lattice of all totally composition for-
mations algebraic?

Our theorem extends the mentioned result for τ -closed classes of finite groups.

Theorem 1.1. The lattice cτ∞ of all τ -closed totally composition formations of
finite groups is algebraic.

The present paper is organized as follows, — basic concepts are introduced in
the second section, used lemmas are given in the third section, and the proof of
the main result is discussed in the fourth section. In particular, it is shown that
one-generated totally composition formations are compact elements of the lattice
cτ∞. Applications of this result and some ideas for further research are presented in
the last fifth section.

2. Preliminaries

We consider only finite groups in this paper, notations and terminologies are
standard [6, 8, 13, 15, 20]. If X is a set of groups, then we write (X) to denote
the intersection of all classes of groups containing X. In particular, (1) is the class
of all identity groups. If a class of groups is a formation, it is closed with respect to
forming quotient groups and subdirect products. For any group G and a nonempty
formation F, we denote by GF the F-residual of G, i.e., the intersection of all normal
subgroups N of G such that G/N ∈ F; the class MF = {G | GF ∈M} is the product
of formations M and F.

2.1. Composition formations. The set of all primes is denoted by P. Let
p ∈ P, and G a group. Then the subgroup Cp(G) is the intersection of the cen-
tralizers of all the abelian p-chief factors of G with Cp(G) = G if G has no abelian
p-chief factors. For every set of groups X, we write Com(X) to denote the class
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of all groups L such that L is isomorphic to some abelian composition factors of
some group in X. If X is the set of one group G, then we write Com(G) instead
of Com(X); π(X) is the set of all primes dividing the order of all groups G ∈ X.
The symbol R(G) denotes the product of all solvable normal subgroups of G. We
consider a function f of the form

f : P ∪ {0} → {formations of groups}, (∗)

and the class of groups

CLF (f) = (G | G/R(G) ∈ f(0); G/Cp(G) ∈ f(p) for all p ∈ π(Com(G))).

If F is a formation such that F = CLF (f) for a function f of the form (∗), then
F is said to be composition (solvably saturated) formation, and f is said to be a
composition satellite of F; see [8, p. 4].

If the values of composition satellites of some formation are themselves compo-
sition formations, then this circumstance leads to the following natural definition.
Every formation is 0-multiply composition; for n > 0, a formation F is called
n-multiply composition if F = CLF (f), and all nonempty values of f are (n − 1)-
multiply composition formations; see [15]. For n = 1 we deal with the case of
composition formations. Consider an example. Let M = NnH and F = NpM,
where the formation H 6= ∅ is not saturated. By [13, Example 1.3.3] and [15,
Corollary 4], formations M and F are n-multiply composition.

A formation is called totally composition if it is n-multiply composition for
all positive integers n. The most well-known solvably saturated formations are
totally composition; see [15]. In particular, the formations ∅ and (1) are totally
composition.

2.2. Lattices of formations. A set of formations Θ is called a complete
lattice of formations [13] if the intersection of every set of formations in Θ belongs
to Θ, and there is a formation F in Θ such that M ⊆ F for every other formation
M of Θ. Every complete lattice of formations is a complete lattice in the ordinary
sense. Various sets of formations form complete lattices; for instance the set of
all saturated formations [13, p. 151], and the set of all composition (or solvably
saturated) formations [14, p. 97] are complete lattices of formations. Moreover
for all positive integers n, the set of all n-multiply composition formations cn, and
the set of all totally composition formations c∞ =

⋂∞
n=1 cn are complete lattices

of formations; see [15, p. 904]. Then using [21, Lemma 3.1], we conclude that
the set of all τ -closed totally composition formations cτ∞ is a complete lattices of
formations too.

A formation in Θ is called a Θ-formation. Let Θ be a complete lattice of
formations, and let {Fi | i ∈ I} be an arbitrary set of Θ-formations.

For a complete lattice Θ, ΘformX is the intersection of all Θ-formations con-
taining a set of groups X, and cτ∞formX is the intersection of all τ -closed totally
composition formations containing a set of groups X. We denote

∨
Θ(Fi | i ∈ I) =

Θform(
⋃
i∈I

Fi). In particular, we write
∨τ
∞(Fi | i ∈ I) = cτ∞form(

⋃
i∈I Fi).
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If M,H ∈ Θ, then M
⋂
H is the greatest lower bound for {M,H} in Θ; and

M
∨

Θ H is the least upper bound for {M,H} in Θ.
Let {fi | i ∈ I} be a set of Θ-valued functions of the form (∗). Then by∨

Θ(fi | i ∈ I) we denote a function f such that f(a) = Θform(
⋃
i∈I fi(a)) for all

a ∈ P ∪ {0}.

3. Lemmata

Lemma 3.1. [15, Lemma 2] Let F =
⋂
i∈I Fi, where Fi = CLF (fi). Then

F = CLF (f), where f =
⋂
i∈I fi.

Let {fi | i ∈ I} be the set of all composition cτ∞-valued satellites of a formation
F. Since the lattice cτ∞ is complete, using Lemma 3.1, we conclude that f =

⋂
i∈I fi

is a composition cτ∞-valued satellite of F. The satellite f is called minimal.

Lemma 3.2. [19] Let X be a nonempty set of groups, F = cτ∞formX, and
π = π(Com(X)), and let f be the minimal cτ∞-valued composition satellite of F.
Then the following statements hold:

1) f(0) = cτ∞form(G/R(G) | G ∈ X);
2) f(p) = cτ∞form(G/Cp(G) | G ∈ X) for all p ∈ π;
3) f(p) = ∅ for all p ∈ P r π;
4) if F = CLF (h) and the satellite h is cτ∞-valued, then for all p ∈ π we have

f(p) = cτ∞form(G | G ∈ h(p) ∩ F and Op(G) = 1), and

f(0) = cτ∞form(G | G ∈ h(0) ∩ F and R(G) = 1).

A group G is monolithic if it has a unique minimal normal subgroup (a mono-
lith), and this is contained in every nontrivial normal subgroup. The socle Soc(G)
of a group G 6= 1 is the product of all minimal normal subgroups of G.

Lemma 3.3. [19, Lemma 9] Let A be a monolithic group with a nonabelian
socle R, M a semiformation and A ∈ cτnformM, n > 0. Then A ∈M.

Recall that a semiformation is a class of groups closed under taking homomor-
phic images.

Lemma 3.4. [8, Lemma 1.3, p. 250] Let Zp be a group of a prime order p, and
G be a group with Op(G) = 1. Suppose that T = Zp o G = [K]G is the regular
wreath product, where K is the base group of T . Then K = Cp(T ) = Op(T ).

Lemma 3.5. [15, Lemma 4] Let F = CLF (f). If G/Op(G) ∈ f(p)∩F for some
prime p, then G ∈ F.

The following lemma is proved by direct calculation.

Lemma 3.6. Let fi be the minimal cτ∞-valued composition satellite of a for-
mation Fi, where i ∈ I. Then f =

∨τ
∞(fi | i ∈ I) is the minimal c∞-valued

composition satellite of formation F =
∨τ
∞(Fi | i ∈ I).

One of the most elementary nontrivial examples of saturated formation is the
class Sπ of all solvable π-groups. (We note that S∅ = (1).) The following lemma
we obtain by [15, Theorem 6] and the proof of [12, Lemma 12].
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Lemma 3.7. Let F be a nonempty τ -closed formation. Then SπF is a τ -closed
totally composition formation, where π(F) ⊆ π ⊆ P.

Lemma 3.8. Let F =
∨τ
∞(Fi | i ∈ I), where Fi ∈ cτ∞ for all i ∈ I, and let A be

a monolithic F-group with a nonabelian socle R. Then A ∈
⋃
i∈I Fi.

Proof. By Lemma 3.7, we obtain that F ⊆ M = Sπc
τ
0 form(

⋃
i∈I Fi), where

π = π(F). Then A ∈ M. Moreover, A ∈ cτ0 form(
⋃
i∈I Fi), since R = Soc(A) is a

nonabelian group, and A belongs to
⋃
i∈I Fi by Lemma 3.3. �

4. Compact elements

Proposition 4.1. For any group G, the one-generated totally composition for-
mation F = cτ∞formG is a compact element of the lattice cτ∞.

Proof. We shall use induction on |G|; let A be a counterexample of the min-
imal order, and F = cτ∞formA ⊆ M = cτ∞form(

⋃
i∈I Fi) =

∨τ
∞(Fi | i ∈ I), where

Fi ∈ cτ∞ for all i ∈ I.
(i) We shall show that A is a monolithic group. Suppose that M1 6= M2 are

two its minimal normal subgroups; and let Mj = cτ∞form(A/Mj), where j = 1, 2.
We have |A/Mj | < |A|, so by induction we have Mj ⊆M, which gives

M1 ⊆ cτ∞form(Fi1
⋃
. . .

⋃
Fit), and M2 ⊆ cτ∞form(Fit+1

⋃
. . .

⋃
Fis)

for some i1, . . . , is.
Thus F = M1

∨τ
∞M2 ⊆ cτ∞form(Fi1

⋃
. . .

⋃
Fit

⋃
Fit+1

⋃
. . .

⋃
Fis), which is a

contradiction.
(ii) Let R = Soc(A). If R is a nonabelian group, then by Lemma 3.8, we have

A ∈
⋃
i∈I Fi, since A ∈M. This is a contradiction.

(iii) Thus, R is an abelian p-group for some prime p ∈ π(Com(A)). Since
A/Φ(A) ∈ formA, we have cτ∞form(A/Φ(A)) = cτ∞formA; and since |A/Φ(A)| <
|A|, by induction, we conclude that R 6⊆ Φ(A). Let B be some subgroup of A with
R ∩B = 1 and Op(B) = 1. Then A = Zp oB = [R]B; and, by lemma 3.4, we have
R = Cp(A) = Op(A). Let fi, f , and m be minimal cτ∞-valued composition satellites
of formations F, Fi, and M, respectively. Lemma 3.6 implies m =

∨τ
∞(fi | i ∈ I).

Applying the properties of regular wreath products, we have

B ∼= A/Op(A) = A/R = A/Cp(A) ∈ m(p).

Since |B| < |A|, by induction, we can find a set J = {j1, j2, . . . , jk} ⊆ I such that
B ∼= A/Cp(A) ∈ fj1(p)

∨τ
∞ . . .

∨τ
∞ fjk(p). By lemma 3.6, m3 =

∨τ
∞(fj | j ∈ J)

is the minimal cτ∞-valued composition satellites of M3 =
∨τ
∞(Fj | j ∈ J). Thus,

A/Op(A) ∼= B ∈ m3(p); and finally by Lemma 3.5, we have A ∈M3. That implies
F = cτ∞formA ⊆M3, contradicting the above. �

Proof of the theorem. Let F be a τ -closed totally composition formation.
Obvious we have F = cτ∞form(

⋃
i∈I Fi) =

∨τ
∞(Fi | i ∈ I), where Fi = cτ∞formGi

for some finite group Gi and i ∈ I. Therefore, it suffice to show that each one-
generated formation Fi is a compact element of the lattice cτ∞. This follows by
Proposition 5.1. �
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Corollary 4.1. [17] The lattice of all totally composition formations of finite
groups is algebraic.

5. Final remarks

5.1. Inductive lattices of formations. Skiba [13] introduced the concept
of an inductive lattice of formations in order to adapt lattice-theoretical methods
for the investigation of saturated formations. This concept plays an important role
in the research of the lattices of formations and their law systems (see Chapter 4 of
the book [13], Chapter 4 of the book [20]). Both the lattice of all totally saturated
formations [22] and the lattice of all τ -closed totally composition formations [16]
are inductive.

Let Θ be a complete lattice of formations. A satellite f is called Θ-valued
if all its values belong to Θ. We denote by Θc the set of all formations having
a composition Θ-valued satellite. In [15, p. 901], it is shown that this set is a
complete lattice of formations. A complete lattice Θc is called inductive if for any
collection of formations {Fi = CLF (fi) | i ∈ I}, where fi is an integrated satellite
of Fi ∈ Θc, the following equality holds:

∨
Θc(Fi | i ∈ I) = CLF (

∨
Θ(fi | i ∈ I)).

The inductance of a lattice Θc, in fact, means that a research of the operation∨
Θc on the set Θc can be reduced to a research of the operation

∨
Θ on the set Θ.

Therefore, the inductance is one a very powerful property of the lattice Θc.
By Theorem 1.1, every composition formation is the join of some one-generated

composition formations, and the inductance of the lattice cτ∞ implies the following
result.

Proposition 5.1. For any groups Gi and formations

Fi = CLF (fi) = cτ∞formGi,

where i ∈ I, we have ∨τ
∞(Fi | i ∈ I) = CLF (

∨τ
∞(fi | i ∈ I)).

5.2. Formations of group languages. Languages are subsets of a certain
type of monoid, the free monoid over an alphabet. Regular languages are precisely
the behaviours of finite automata. A language is regular if its syntactic monoid
is a finite monoid (a regular language is a group language if its syntactic monoid
is a finite group). By A∗ we denote a free monoid on a set A, i.e., the set of all
words with letters from A. A class of regular languages C associates with each finite
alphabet A a set C(A∗) of regular languages of A∗.

We consider only finite monoids later on. A formation of languages [2] is a
class of regular languages F satisfying the following two conditions: (1) for each
alphabet A, F(A∗) is closed under Boolean operations and quotients, and (2) if L
is a language of F(B∗) and η : B∗ → M denotes its syntactic morphism, then for
each monoid morphism α : A∗ → B∗ such that η ◦ α is surjective, the language
α−1(L) belongs to F(A∗).

Following [2], we associate with each formation of monoids M the class of lan-
guages F(M) as follows; for each alphabet A, by F(M)(A∗) we denote the set of
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languages of A∗ fully recognised by some monoid of M (or, equivalently, whose
syntactic monoid belongs to M). Given a formation of languages F . We denote
by M(F) the formation of monoids generated by the syntactic monoids of the lan-
guages of F . By the Formation Theorem [2], the correspondences M→ F(M) and
F → M(F) are two mutually inverse, order preserving, bijections between forma-
tions of monoids and formations of languages. In particular we have a one-to-one
correspondence between one-generated composition formations of finite groups and
some formations of languages. Languages corresponding to saturated formations of
finite groups were studien in [3, 18]. Naturally rises the following question: How to
describe the languages corresponding to (one-generated) τ -closed totally composition
formations of finite groups?

5.3. Classes of hypergroups. The concept of formation appeared first in
the 1960s in connection with finite solvable groups. Further research showed that
formations are of general algebraic nature and can be applied to the study of not
necessarily solvable finite and infinite groups, Lie algebras, universal algebras and
even of a general algebraic system.

In 1934, at the eight Congress of Scandinavian Mathematics, Marty [10] intro-
duces a concept of algebraic hyperstructure, which naturally generalizes classical
algebraic structures such as groups and rings. As mentioned in [5], the first example
of hypergroups, which motivates the introduction of this structure, is the quotioent
of a finite group by arbitrary (not necessary normal) subgroup, i.e., if the subgroup
is not normal, then the quotient is not a group, but it is always a hypergroup with
respect to a certain hyperoperation. Keeping in mind this idea, we can introduce
a concept of hyperformation, assuming that subgroups in Definition 1.1 are not
necessarily normal.

Definition 5.1. A hyperformation is a class of hypergroups F satisfying the
following two conditions: (1) if H ∈ F, then H/N ∈ F; and (2) if H/N1, H/N2 ∈ F,
then H/N1 ∩N2 ∈ F, for any subhypergroups N , N1, N2 of H.

It will be interesting to study the relation between classical one-generated (satu-
rated, composition) formations and hyperformations. Finally, we note that recently
in [1], some examples of hypergroups associated with some models of biological in-
heritance were considered.
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