• русский
    • English
  • English 
    • русский
    • English
    View Item 
    •   DSpace Home
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics. 2020 13 (3)
    • View Item
    •   DSpace Home
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics. 2020 13 (3)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exact Solution of 3D Navier–Stokes Equations

    Thumbnail
    View/Open:
    Koptevn+.pdf (109.9 Kb)
    DOI:
    10.17516/1997-1397-2020-13-3-306-313
    URI (for links/citations):
    http://elib.sfu-kras.ru/handle/2311/135202
    Author:
    Koptev, Alexander V.
    Коптев, Александр В.
    Date:
    2020-05
    Journal Name:
    Журнал Сибирского федерального университета.Математика и физика.Journal of Siberian Federal University. Mathematics & Physics, 2020 13 (3)
    Abstract:
    Procedure for constructing exact solutions of 3D Navier–Stokes equations for an incompressible fluid flow is proposed. It is based on the relations representing the previously obtained first integral of the Navier–Stokes equations. A primary generator of particular solutions is proposed. It is used to obtain new classes of exact solutions
     
    В работе предложена процедура построения точных решений 3D-уравнений Навье– Стокса для несжимаемой жидкости. За основу принимаются соотношения, представляющие первый интеграл уравнений Навье–Стокса, ранее полученные автором. Построен первичный генератор частных решений, и с его помощью найдены новые классы точных решений
     
    Collections:
    • Математика и физика. Mathematics & Physics. 2020 13 (3) [11]
    Metadata:
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Heritage Interpretation as Tool in Cross-Cultural Communication: Сhallenges and Solutions in the Work of Guides-Interpreters 

      Weber, Elena A.; Вебер, Е.А. (Сибирский федеральный университет. Siberian Federal University, 2018-07)
      This article introduces the notion, definitions, principles and some techniques of heritage interpretation. Being a useful tool for overcoming challenging translation, cultural and cross-cultural barriers heritage ...
    • Analysis of an Exact Solution of Problem of the Evaporative Convection (Review). Part II. Three-dimensional Flows 

      Bekezhanova, Victoria B.; Goncharova, Olga N.; Shefer, Ilia A.; Бекежанова, Виктория Б.; Гончарова, Ольга Н.; Шефер, Илья А. (Сибирский федеральный университет. Siberian Federal University, 2018-06)
      In the paper the review of exact solutions of the three-dimensional convection problems is presented. The solutions allow one to model the two-layer convective fluid flows with evaporation at the thermocapillary interface
    • On Formal Solutions of H¨ormander’s Initial-boundary Value Problem in the Class of Laurent Series 

      Leinartas, Evgeny K.; Yakovleva, Tatiana I.; Лейнартас, Евгений К.; Яковлева, Татьяна И. (Сибирский федеральный университет. Siberian Federal University, 2018-06)
      We define a derivation of the ring of Laurent series with supports in rational cones and prove existence and uniqueness of a solution to an analog of one initial-boundary value problem of H¨ormander for polynomial differential ...
    • Uniqueness of a Solution of an Ice Plate Oscillation Problem in a Channel 

      Shishmarev, Konstantin A.; Papin, Alexander A.; Шишмарев, Константин А.; Папин, Александр А. (Сибирский федеральный университет. Siberian Federal University, 2018-08)
      In this paper an initial-boundary value problem for two mathematical models of elastic and viscoelastic oscillations of a thin ice plate in an infinite channel under the action of external load is considered in terms of ...
    • Conditional Correctness and Approximate Solution of Boundary Value Problem for the System of Second Order Mixed-type Equations 

      Khajiev, Ikrombek O.; Хажиев, Икромбек О. (Сибирский федеральный университет. Siberian Federal University, 2018-06)
      In this paper, we consider the system of second-order mixed type equations. Theorems of uniqueness and conditional stability in the set of correctness are proven. The approximate solution is constructed by the method of ...

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV