Показать сокращенную информацию

Вяткин, А. В.
Кучунова, Е. В.
2020-01-20T08:04:57Z
2020-01-20T08:04:57Z
2019-01
Вяткин, А. В. Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem [Текст] / А. В. Вяткин, Е. В. Кучунова // Lecture Notes in Computer Science: Finite Difference Methods. Theory and Applications. — 2019. — Т. 11386. — С. 621-629
03029743
https://link.springer.com/chapter/10.1007/978-3-030-11539-5_73
https://elib.sfu-kras.ru/handle/2311/129872
A conservative semi-Lagrangian method is developed in order to solve three-dimensional linear advection equation. It based on balance equation in integral form. Main feature of roposed method consists in way of computation of integral at lower time level. To compute integral, we decompose a domain of integration into several tetrahedrons and approximate integrand by trilinear function.
Semi-Lagrangian method
advection equation
decomposition of integration domain
local conservation low
Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem
Journal Article
Journal Article Postprint
621-629
27.35.17
2020-01-20T08:04:57Z
10.1007/978-3-030-11539-5_73
Институт математики и фундаментальной информатики
Базовая кафедра вычислительных и информационных технологий
Lecture Notes in Computer Science
Q2
Q4


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию