Показать сокращенную информацию
Convolutional recognition of dynamic textures with preliminary categorization
Автор | Favorskaya, M. N. | |
Автор | Pyataeva, A. V. | |
Дата внесения | 2018-02-07T07:34:30Z | |
Дата, когда ресурс стал доступен | 2018-02-07T07:34:30Z | |
Дата публикации | 2017-05 | |
Библиографическое описание | Favorskaya, M. N. Convolutional recognition of dynamic textures with preliminary categorization [Текст] / M. N. Favorskaya, A. V. Pyataeva // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: International Workshop "Photogrammetric and computer vision techniques for video surveillance, biometrics and biomedicine". — 2017. — Volume XLII-2/W4. — С. 47-54 | |
URI (для ссылок/цитирований) | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/47/2017/isprs-archives-XLII-2-W4-47-2017.pdf | |
URI (для ссылок/цитирований) | https://elib.sfu-kras.ru/handle/2311/70277 | |
Аннотация | Dynamic Texture (DT) can be considered as an extension of the static texture additionally comprising the motion features. The DT is very wide but the weak studied type of textures that is employed in many tasks of computer vision. The proposed method of the DTs recognition includes a preliminary categorization based on the proposed four categories, such as natural particles with periodic movement, natural translucency/transparent non-rigid blobs with randomly changed movement, man-made opaque rigid objects with periodic movement, and man-made opaque rigid objects with stationary or chaotic movement. Such formulation permitted to construct the separate spatial and temporal Convolutional Neural Networks (CNNs) for each category. The inputs of the CNNs are a pair of successive frames (taken through 1, 2, 3, or 4 frames according to a category), while the outputs store the sets of binary features in a view of histograms. In test stage, the concatenated histograms are compared with the histograms of the classes using the Kullback-Leibler distance. The experiments demonstrate the efficiency of the designed CNNs and provided the recognition rates up 97.46–98.32% for the sequences with a single type of the DT conducted on the DynTex database. | |
Тема | Dynamic textures | |
Тема | Convolutional neural networks | |
Тема | Recognition | |
Тема | Categorization | |
Название | Convolutional recognition of dynamic textures with preliminary categorization | |
Тип | Journal Article | |
Тип | Journal Article Preprint | |
Страницы | 47-54 | |
ГРНТИ | 28.23.15 | |
Дата обновления | 2018-02-07T07:34:30Z | |
DOI | 10.5194/isprs-archives-XLII-2-W4-47-2017 | |
Институт | Институт космических и информационных технологий | |
Подразделение | Кафедра систем искусственного интеллекта | |
Журнал | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
Квартиль журнала в Scopus | без квартиля | |
Квартиль журнала в Web of Science | без квартиля |