Показать сокращенную информацию
Вопросы строения конечных почти-полей
Автор | Кравцова, Ольга Вадимовна | |
Автор | Левчук, Владимир Михайлович | |
Дата внесения | 2021-08-13T09:36:38Z | |
Дата, когда ресурс стал доступен | 2021-08-13T09:36:38Z | |
Дата публикации | 2019-11 | |
Библиографическое описание | Кравцова, Ольга Вадимовна. Вопросы строения конечных почти-полей [Текст] / Ольга Вадимовна Кравцова, Владимир Михайлович Левчук // Труды Института математики и механики Уро РАН. — 2019. — Т. 25 (№ 4). — С. 107-117 | |
URI (для ссылок/цитирований) | http://journal.imm.uran.ru/2019-v.25-4-pp.107-117 | |
URI (для ссылок/цитирований) | https://elib.sfu-kras.ru/handle/2311/143344 | |
Аннотация | Полуполем называют простое кольцо, в котором ненулевые элементы по умножению образуют лупу. К более общему понятию квазиполя (в случае ассоциативного кольца — почти-поля) приходим, ослабляя двустороннюю дистрибутивность до односторонней. Исследуемые вопросы строения конечных полуполей и квазиполей изучались в различных ситуациях уже давно. В последние годы они отмечались явно в ряде статей. Ранее эти вопросы были решены для полуполей Кнута — Руа и Хентзела — Руа — контрпримеры порядков 32 и 64 к известной гипотезе Венэ. Для описания некоторых квазиполей малых порядков использовались также методы компьютерной алгебры. Известно, что центр конечного полуполя всегда содержит простое подполе. Авторы показывают, что центр конечного почти-поля Q содержит простое подполе P кроме четырех почти-полей Цассенхауза порядков 5^2, 7^2, 11^2, 29^2. Ядро почти-поля Q всегда содержит P. При достаточно общих условиях перечислены максимальные подполя конечного почти-поля. Группы автоморфизмов почти-поля Q и его мультипликативной группы Q∗ были найдены ранее. Метацикличность группы Q∗ позволяет выписать явно спектр групповых порядков ее элементов. | |
Тема | квазиполе | |
Тема | полуполе | |
Тема | почти-поле | |
Тема | максимальное подполе | |
Тема | спектр | |
Название | Вопросы строения конечных почти-полей | |
Тип | Journal Article | |
Тип | Journal Article Preprint | |
Страницы | 107-117 | |
Дата обновления | 2021-08-13T09:36:38Z | |
DOI | 10.21538/0134-4889-2019-25-4-107-117 | |
Институт | Институт математики и фундаментальной информатики | |
Подразделение | Кафедра высшей математики № 2 | |
Журнал | Труды Института математики и механики Уро РАН | |
Квартиль журнала в Scopus | без квартиля | |
Квартиль журнала в Web of Science | без квартиля |