Показать сокращенную информацию

Nepomnyashchiy, O.
Kazakov, F.
Ostroverkhov, D.
Tarasov, A.
Sirotinina, N.
2021-08-13T09:30:07Z
2021-08-13T09:30:07Z
2020-01
Nepomnyashchiy, O. A neural regulator for efficient control of electric vehicle motors [Текст] / O. Nepomnyashchiy, F. Kazakov, D. Ostroverkhov, A. Tarasov, N. Sirotinina // EAI Endorsed Transactions on Energy Web. — 2020. — Т. 7 (№ 28).
2032944X
https://eudl.eu/doi/10.4108/eai.13-7-2018.162804
https://elib.sfu-kras.ru/handle/2311/142376
Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.
INTRODUCTION: A number of promising designs of electric vehicles use separate wheeled motors. In this case, an important task of designing a power supply system is to provide effective control of electric motors and battery charge / discharge modes. OBJECTIVES: The paper considers the problem of determining optimal coefficients of the electric motor proportionalintegral (PI) controller and their influence on the power distribution in the electric vehicle on-board power supply system. METHODS: It is proposed to implement separate adaptive control of electric motors, taking into account conditions of operating, road surface, and other factors. There are introduced two options for the motor controller implementation: an adaptive PI-controller and an intelligent PI-controller with an adaptive observer based on a neural network. RESULTS: The simulation results show that the adaptive PI-controller provides a reduction in the transient duration, but insufficient energy efficiency. Intelligent PI controller on the base of neuroregulator provides 2 times reduction of transition time, reduction of energy losses and engine overshoot. CONCLUSION: The use of the neuroregulator makes it possible to automatically select and adjust PI controller coefficients. In addition, the proposed control method reduces inrush currents and torque spikes, that prolongs the service life of mechanical components. During motor operation, the neural network can continue learning and adjusting PIcontroller coefficients to changes in operating conditions (for example, seasonal) and motor parameters. Assumed outcomes of this solution will be improving electric vehicle characteristics, increasing mileage and battery life time, and prospective transition to an electronic differential.
Energy optimization
nature-inspired computing techniques
neural network electric vehicle
PI-regulator
neural observer
embedded systems
adaptive control
method
model
A neural regulator for efficient control of electric vehicle motors
Journal Article
Published Journal Article
2021-08-13T09:30:07Z
10.4108/eai.13-7-2018.162804
Институт космических и информационных технологий
Кафедра вычислительной техники
EAI Endorsed Transactions on Energy Web
Q4


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию