Показать сокращенную информацию
Acute pancreatitis severity classifcation: accuracy, robustness, visualization
Автор | Ekaterina, Mangalova | |
Автор | Olesya, Chubarova | |
Автор | Daniil, Melekh | |
Автор | Anton, Stroev | |
Дата внесения | 2020-01-20T07:15:04Z | |
Дата, когда ресурс стал доступен | 2020-01-20T07:15:04Z | |
Дата публикации | 2019-09 | |
Библиографическое описание | Ekaterina, Mangalova. Acute pancreatitis severity classifcation: accuracy, robustness, visualization [Текст] / Mangalova Ekaterina, Chubarova Olesya, Melekh Daniil, Stroev Anton // Applied Methods of Statistical Analysis. Statistical Computation and Simulation - AMSA'2019. — 2019. — С. 278-285 | |
URI (для ссылок/цитирований) | http://amsa.conf.nstu.ru/amsa2019/proceedings/ | |
URI (для ссылок/цитирований) | https://elib.sfu-kras.ru/handle/2311/128732 | |
Аннотация | The work is devoted to the problem of acute pancreatitis severity classifcation. This problem is characterized by a small amount of data, which leads to unstable estimations for new patients and a strong infuence of the training sample on the predictions. In this paper prediction stability visualization based on violin plot is proposed and applied. A simulation experiments are carried out to study the stability of linear regression, support vector machine, random forest trained with various subsets. | |
Тема | classifcation | |
Тема | machine learning | |
Тема | visualization | |
Тема | violin plot | |
Тема | bootstrapping | |
Название | Acute pancreatitis severity classifcation: accuracy, robustness, visualization | |
Тип | Journal Article | |
Тип | Journal Article Preprint | |
Страницы | 278-285 | |
ГРНТИ | 83.03.05 | |
Дата обновления | 2020-01-20T07:15:04Z | |
Институт | Институт космических и информационных технологий | |
Подразделение | Кафедра информационных систем | |
Журнал | Applied Methods of Statistical Analysis. Statistical Computation and Simulation - AMSA'2019 | |
Квартиль журнала в Scopus | без квартиля |