Показать сокращенную информацию
Intelligently Informed Control Over the Process Variables of Oil and Gas Equipment Maintenance
Автор | Бухтояров, В. В. | |
Автор | Милов, А. В. | |
Автор | Тынченко, В. С. | |
Автор | Петровский, Э. А. | |
Автор | Тынченко, С. В. | |
Дата внесения | 2020-01-20T07:13:27Z | |
Дата, когда ресурс стал доступен | 2020-01-20T07:13:27Z | |
Дата публикации | 2019-03 | |
Библиографическое описание | Бухтояров, В. В. Intelligently Informed Control Over the Process Variables of Oil and Gas Equipment Maintenance [Текст] / В. В. Бухтояров, А. В. Милов, В. С. Тынченко, Э. А. Петровский, С. В. Тынченко // International Review of Automatic Control. — 2019. — Т. 12 (№ 2). — С. 59-66 | |
ISSN | 19746059 | |
URI (для ссылок/цитирований) | https://www.praiseworthyprize.org/jsm/index.php?journal=ireaco&page=article&op=view&path[]=23375 | |
URI (для ссылок/цитирований) | https://elib.sfu-kras.ru/handle/2311/128587 | |
Аннотация | This article details a new technique that uses intelligent methods in order to identify non-standard errors when controlling the technological process of maintenance petroleum equipment. First, a new formulation of the technological process control problem for the maintenance of petroleum equipment is presented. This is stated in terms of classifying errors introduced by measuring the parameters of the technological process. Intelligent methods have been proven as a tool to solve the classification problem. Various machine-learning methods have been considered: decision trees, artificial neural networks (ANN), and fuzzy logic. In this study, an effectiveness comparison of the proposed methods has been conducted using experimental data of petroleum equipment maintenance. Results indicate that ANN is the most efficient method to classify measurement errors. The proposed method will primarily improve repair quality of certain equipment components such as the pipeline system for transferring raw hydrocarbon materials. Moreover, it will improve the quality of maintenance work and durability of the pipeline system, which in turn can increase the hydrocarbon production efficiency. | |
Тема | Equipment Maintenance | |
Тема | Induction Brazing | |
Тема | Measurement Errors | |
Тема | Intelligent Analysis | |
Тема | Petroleum Equipment | |
Название | Intelligently Informed Control Over the Process Variables of Oil and Gas Equipment Maintenance | |
Тип | Journal Article | |
Тип | Journal Article Preprint | |
Страницы | 59-66 | |
ГРНТИ | 50.03.03 | |
Дата обновления | 2020-01-20T07:13:27Z | |
DOI | 10.15866/ireaco.v12i2.16790 | |
Институт | Институт нефти и газа | |
Институт | Институт управления бизнес-процессами и экономики | |
Подразделение | Кафедра технологических машин и оборудования нефтегазового комплекса | |
Подразделение | Кафедра экономики и информационных технологий менеджмента | |
Журнал | International Review of Automatic Control | |
Квартиль журнала в Scopus | Q2 |