Показать сокращенную информацию

Андреев, В. К.
Marina V. Efimova
2019-07-01T07:27:52Z
2019-07-01T07:27:52Z
2018
Андреев, В. К. A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel [Текст] / В. К. Андреев, Marina V. Efimova // Journal of Siberian Federal University-Mathematics and Physics: Mathematics and Physics. — 2018. — Т. 11 (№ 4). — С. 482-493
http://elib.sfu-kras.ru/bitstream/handle/2311/71746/andreev.pdf?sequence=4
https://elib.sfu-kras.ru/handle/2311/111044
We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.
conjugate problem
inverse problem
a priori estimates
asymptotic behavior
A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel
Journal Article
Published Journal Article
482-493
27.35.21
2019-07-01T07:27:52Z
10.17516/1997-1397-2018-11-4-482-493
Институт математики и фундаментальной информатики
Базовая кафедра математического моделирования и процессов управления
Кафедра математического обеспечения дискретных устройств и систем
Journal of Siberian Federal University-Mathematics and Physics
Q3
без квартиля


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию