Показать сокращенную информацию
Properties of Solutions for the Problem of a Joint Slow Motion of a Liquid and a Binary Mixture in a Two-Dimensional Channel
Автор | Андреев, В. К. | |
Автор | Efimova, M. V. | |
Дата внесения | 2019-07-01T07:27:52Z | |
Дата, когда ресурс стал доступен | 2019-07-01T07:27:52Z | |
Дата публикации | 2018-07 | |
Библиографическое описание | Андреев, В. К. Properties of Solutions for the Problem of a Joint Slow Motion of a Liquid and a Binary Mixture in a Two-Dimensional Channel [Текст] / В. К. Андреев, M. V. Efimova // Journal of Applied and Industrial Mathematics. — 2018. — Т. 12 (№ 3). — С. 395-408 | |
ISSN | 19904789 | |
URI (для ссылок/цитирований) | https://link.springer.com/article/10.1134/S1990478918030018 | |
URI (для ссылок/цитирований) | https://elib.sfu-kras.ru/handle/2311/111043 | |
Описание | Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала. | |
Аннотация | Under study is a conjugate boundary value problemdescribing a joint motion of a binary mixture and a viscous heat-conducting liquid in a two-dimensional channel, where the horizontal component of the velocity vector depends linearly on one of the coordinates. The problemis nonlinear and inverse because the systems of equations contain the unknown time functions—the pressure gradients in the layers. In the case of small Marangoni numbers (the so-called creeping flow) the problem becomes linear. For its solutions the two different integral identities are valid which allow us to obtain a priori estimates of the solution in the uniform metric. It is proved that if the temperature on the channel walls stabilizes with time then, as time increases, the solution of the nonstationary problem tends to a stationary solution by an exponential law. | |
Тема | conjugate problem inverse problem a priori estimates surface tension thermocapillarity asymptotic behavior | |
Название | Properties of Solutions for the Problem of a Joint Slow Motion of a Liquid and a Binary Mixture in a Two-Dimensional Channel | |
Тип | Journal Article | |
Тип | Journal Article Preprint | |
Страницы | 395-408 | |
ГРНТИ | 27.35.21 | |
Дата обновления | 2019-07-01T07:27:52Z | |
DOI | 10.1134/S1990478918030018 | |
Институт | Институт математики и фундаментальной информатики | |
Подразделение | Базовая кафедра математического моделирования и процессов управления | |
Подразделение | Кафедра математического обеспечения дискретных устройств и систем | |
Журнал | Journal of Applied and Industrial Mathematics | |
Квартиль журнала в Scopus | Q2 |