Author | Shestakov, Ivan V. | |
Author | Shlapunov, Alexander A. | |
Accessioned Date | 2009-03-03T05:18:04Z | |
Available Date | 2009-03-03T05:18:04Z | |
Issued Date | 2009-01 | |
URI (for links/citations) | https://elib.sfu-kras.ru/handle/2311/877 | |
Abstract | Let D be a bounded domain in Cn (n > 1) with a smooth boundary @D. We indicate appropriate Sobolev
spaces of negative smoothness to study the non-homogeneous Cauchy problem for the Cauchy-Riemann
operator @ in D. In particular, we describe traces of the corresponding Sobolev functions on @D and give
an adequate formulation of the problem. Then we prove the uniqueness theorem for the problem, describe
its necessary and sufficient solvability conditions and produce a formula for its exact solution. | en |
Size | 354065 bytes | |
MIME | application/pdf | |
Language | en | en |
Publisher | Сибирский федеральный университет. Siberian Federal University | en |
Is part of series | Журнал Сибирского федерального университета. Математика и физика. Journal of Siberian Federal University. Mathematics & Physics | en |
Is part of series | 2009 2 (1) | en |
Subject | negative Sobolev spaces | en |
Subject | ill-posed Cauchy problem | en |
Title | Negative Sobolev Spaces in the Cauchy Problem for the Cauchy-Riemann Operator | en |
Type | Journal Article | |
Type | Published Journal Article | |
Contacts | Ivan V.Shestakov: Institute of Mathematics
Siberian Federal University,
av. Svobodny 79, Krasnoyarsk, 660041,
Russia, e-mail: Shestakov-V@yandex.ru; Alexander A.Shlapunov: Institute of Mathematics
Siberian Federal University,
av. Svobodny 79, Krasnoyarsk, 660041,
Russia, e-mail: shlapuno@lan.krasu.ru | |
Pages | 17-30 | |
sfu.metadata.dc.x-file | http://elib.sfu-kras.ru:8080/bitstream/2311/877/1/%D1%88%D0%BB%D0%B0%D0%BF%D1%83%D0%BD%D0%BE%D0%B2.pdf | |