• русский
    • English
  • русский 
    • русский
    • English
    Просмотр элемента 
    •   Главная
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics. 2016 9 (1)
    • Просмотр элемента
    •   Главная
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics. 2016 9 (1)
    • Просмотр элемента
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Invariant Estimates for Oscillatory Integrals with Polynomial Phase

    Thumbnail
    Скачать файл:
    Safarov.pdf (103.7 КБ)
    URI (для ссылок/цитирований):
    http://elib.sfu-kras.ru/handle/2311/20082
    Автор:
    Safarov, Akbar R.
    Сафаров, Акбар Р.
    Дата:
    2016-03
    Аннотация:
    In this paper we consider estimates for trigonometric (oscillatory) integrals with polynomial phase func- tion of degree three. The main result of the paper is the theorem on uniform invariant estimates for trigonometric integrals. This estimate improves results obtained in the paper by D. A. Popov [1] for the case when the phase function is a sum of a homogeneous polynomial of third degree and a linear function, as well as the estimates of the paper [2] for the fundamental solution to the dispersion equation of third order
     
    В этой статье мы рассмотрим инвариантные оценки тригонометрических (осциллирующих) интегралов с полиномиальной фазой. Основным результатом является теорема о равномерной инвариантной оценке тригонометрического интеграла. Полученная оценка улучшает результа- ты работы Д. А. Попова [1] для случая, когда фазовая функция является суммой однородного полинома третьей степени и линейной функции, а также оценки работы [2] для фундаменталь- ного решения дисперсионного уравнения третьей степени
     
    Коллекции:
    • Математика и физика. Mathematics & Physics. 2016 9 (1) [14]
    Метаданные:
    Показать полную информацию

    DSpace software copyright © 2002-2015  DuraSpace
    Контакты | Отправить отзыв
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Контакты | Отправить отзыв
    Theme by 
    @mire NV