Показать сокращенную информацию

Feniova, I.
Sakharova, E.
Karpowicz, M.
Gladyshev, M. I.
Sushchik, N. N.
Dawidowicz, P.
Gorelysheva, Z.
Górniak, A.
Stroinov, Y.
Dzialowski, A.
2021-08-13T09:35:30Z
2021-08-13T09:35:30Z
2019-10
Feniova, I. Direct and indirect impacts of fish on crustacean zooplankton in experimental mesocosms [Текст] / I. Feniova, E. Sakharova, M. Karpowicz, M. I. Gladyshev, N. N. Sushchik, P. Dawidowicz, Z. Gorelysheva, A. Górniak, Y. Stroinov, A. Dzialowski // Water (Switzerland). — 2019. — Т. 11 (№ 10). — С. 2090
20734441
https://www.researchgate.net/publication/336357946_Direct_and_Indirect_Impacts_of_Fish_on_Crustacean_Zooplankton_in_Experimental_Mesocosms
https://elib.sfu-kras.ru/handle/2311/143249
Understanding the factors that regulate phytoplankton and zooplankton is an important goal of aquatic ecologists; however, much remains unknown because of complex interactions between phytoplankton, zooplankton, and fish. Zooplankton, in particular cladocerans, can be regulated by bottom–up factors either via food quantity or food quality in terms of polyunsaturated fatty acids (PUFA) or phosphorus (P) contents in phytoplankton. Fish can recycle nutrients and in turn change the PUFA and P contents of algal resources, thus modifying bottom–up regulation. Furthermore, fish can change phytoplankton structure through consumption of cladocerans which selectively graze phytoplankton. We conducted a mesocosm (300 L) experiment to determine how trophic state and fish affected crustacean dynamics. The mesocosms were filled with water containing natural plankton from the eutrophic Lake Jorzec and mesotrophic Lake Majcz (Northeastern Poland), and we manipulated fish presence/absence. We also conducted a complementary life-table experiment to determine how trophic state and fish nonconsumptively affected demographic parameters of the dominant cladocerans in the mesocosms. Small and large cladoceran species responded differently to food quantity and quality. Small-bodied Ceriodaphnia were regulated mainly by resource concentrations (i.e., food quantity), while large species were limited by PUFAs (i.e., food quality). Fish likely increased food quality in terms of PUFA, primarily eicosapentaenoic acids (EPA), thus providing conditions for more successful development of Daphnia than in the fish-free treatments. Phosphorus in the seston was likely limiting for zooplankton. However, food quality in terms of phosphorus was likely less important than PUFA because zooplankton can accumulate nutrients in their body.
Zooplankton
phytoplankton
nutrients
population growth rate
small and large cladocerans
fish effects
stoichiometric elemental composition
polyunsaturated fatty acids
mesocosm experiments
Direct and indirect impacts of fish on crustacean zooplankton in experimental mesocosms
Journal Article
Journal Article Preprint
2090
2021-08-13T09:35:30Z
10.3390/w11102090
Институт фундаментальной биологии и биотехнологии
Кафедра водных и наземных экосистем
Water (Switzerland)
Q1
Q2


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию