Показать сокращенную информацию

Mozgovoy, D. K.
Kapulin, D. V.
Svinarenko, D. N.
Yamskikh, T. N.
Chikizov, A. A.
Tsarev, R. Y.
2021-08-13T09:29:59Z
2021-08-13T09:29:59Z
2020-07
Mozgovoy, D. K. Geometry-based automated recognition of objects on satellite images of sub-meter resolution [Текст] / D. K. Mozgovoy, D. V. Kapulin, D. N. Svinarenko, T. N. Yamskikh, A. A. Chikizov, R. Y. Tsarev // Advances in Intelligent Systems and Computing. — 2020. — № 1226. — С. 371-379
https://link.springer.com/chapter/10.1007%2F978-3-030-51974-2_36
https://elib.sfu-kras.ru/handle/2311/142344
The paper considers an algorithm for automated classification of mobile small size objects on multispectral satellite images of submeter spatial resolution using radiometric and geometric features. It ensures recognizing the desired classes of objects with high accuracy regardless of their orientation in the image. The geometric features of the objects classified in the binary image included the area of the object, the lengths of the principal and auxiliary axes of inertia, the eccentricity of the ellipse with the main moments of inertia, the area of a convex polygon described near the object, the equivalent diameter of a circle with the same area, and the convexity coefficient.
Satellite Monitoring
Sub-meter Resolution
Image Processing
Geometry-based automated recognition of objects on satellite images of sub-meter resolution
Journal Article
Journal Article Preprint
371-379
2021-08-13T09:29:59Z
10.1007/978-3-030-51974-2_36
Институт космических и информационных технологий
Кафедра разговорного иностранного языка
Кафедра информатики
Advances in Intelligent Systems and Computing
Q3
без квартиля


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию