• русский
    • English
  • English 
    • русский
    • English
    View Item 
    •   DSpace Home
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics (Prepublication)
    • View Item
    •   DSpace Home
    • Научные журналы
    • Журнал СФУ. Математика и физика. Journal of SibFU. Mathematics & Physics
    • Математика и физика. Mathematics & Physics (Prepublication)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solvability of BVPs for the Parabolic-Hyperbolic Equation with Non-linear Loaded Term

    Thumbnail
    View/Open:
    Abdullaev.pdf (123.3 Kb)
    DOI:
    10.17516/1997-1397-2021-14-2-133-145
    URI (for links/citations):
    http://elib.sfu-kras.ru/handle/2311/137963
    Author:
    Abdullaev, Obidjon Kh.
    Абдуллаев, Обиджон
    Date:
    2021
    Journal Name:
    Журнал Сибирского федерального университета. Математика и физика, 2021. Journal of Siberian Federal University. Mathematics & Physics, 2021, 14 (2)
    Abstract:
    This work is devoted to prove the existence and uniqueness of solution of BVP with non-local assumptions on the boundary and integral gluing conditions for the parabolic-hyperbolic type equation involving Caputo derivatives. Using the method of integral energy, the uniqueness of solution have been proved. Existence of solution was proved by the method of integral equations
     
    Данная работа посвящена доказательству существования и единственности краевой задачи с нелокальными краевыми и интегральными условиями склеивания для парабологиперболического уравнения с дробной производной Капуто. Применением метода интегралов энергии доказана единственность решения задачи. Существование решения было доказано методом интегральных уравнений
     
    Collections:
    • Математика и физика. Mathematics & Physics (Prepublication) [13]
    Metadata:
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Global in Time Results for a Parabolic Equation Solution in Non-rectangular Domains 

      Bouzidi, Louanas; Kheloufi, Arezki; Бузиди, Луанас; Хелоуфи, Арезки (Сибирский федеральный университет. Siberian Federal University, 2020-05)
      This article deals with the parabolic equation ∂tw − c(t)∂2x w = f in D, D = { (t, x) ∈ R2 : t > 0, φ1 (t) < x < φ2(t) } with φi : [0,+∞[→ R, i = 1, 2 and c : [0,+∞[→ R satisfying some conditions and the problem ...
    • On a Second Order Linear Parabolic Equation with Variable Coefficients in a Non-Regular Domain of R³ 

      Boulkouane, Ferroudj; Kheloufi, Arezki; Булкоан, Ферроди; Келуфи, Арезки (Сибирский федеральный университет. Siberian Federal University, 2018-08)
      This paper is devoted to the study of the following variable-coefficient parabolic equation in non-divergence form @tu ����� Σ2 i=1ai(t;x 1; x2)@iiu +Σ2i=1bi(t; x1; x2)@iu + c(t; 1; x2)u = f(t; x1; x2); subject to ...
    • On the Fredholm property for the steady Navier-Stokes equations in weighted H¨older spaces 

      Parfenov, Andrei A.; Shlapunov, Alexander A.; Парфенов, Андрей А.; Шлапунов, А.А. (Сибирский федеральный университет. Siberian Federal University, 2018-10)
      We prove that the steady Navier-Stokes equations induce a Fredholm non-linear map on the scale of H¨older spaces weighted at the infinity
    • On One Two-dimensional Binary Mixture’s Motion in a Flat Layer 

      Darabi, Nemat; Malah, Hamid; Дараби, Немат; Малах, Хамид (Сибирский федеральный университет. Siberian Federal University., 2016-07)
      In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion of binary mixture in a flat layer. When Reynolds number (Re ! 0) is small, it is possible to simplify these ...
    • On Solvability of Systems of Symbolic Polynomial Equations 

      Egorushkin, Oleg I.; Kolbasina, Irina V.; Safonov, Konstantin V.; Егорушкин, Олег И.; Колбасина, Ирина В.; Сафонов, Константин В. (Сибирский федеральный университет. Siberian Federal University., 2016-06)
      Approaches to solving the systems of non-commutative polynomial equations in the form of formal power series (FPS) based on the relation with the corresponding commutative equations are developed. Every FPS is mapped to ...

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV