Algorithm for construction of volume forms on toric varieties starting from a convex integer polytope
View/ Open:
URI (for links/citations):
https://elib.sfu-kras.ru/handle/2311/27999Author:
Кытманов, А. А.
Щуплев, А. В.
Зыкова, Т. В.
Corporate Contributor:
Институт космических и информационных технологий
Институт математики и фундаментальной информатики
Кафедра прикладной математики и компьютерной безопасности
Кафедра теории функций
Date:
2016-03Journal Name:
Programming and Computer SoftwareJournal Quartile in Scopus:
Q3Journal Quartile in Web of Science:
Q4Bibliographic Citation:
Кытманов, А. А. Algorithm for construction of volume forms on toric varieties starting from a convex integer polytope [Текст] / А. А. Кытманов, А. В. Щуплев, Т. В. Зыкова // Programming and Computer Software. — 2016. — Т. 42 (№ 2). — С. 99-106Abstract:
This paper presents a method and a corresponding algorithm for constructing volume forms (and related forms that act as kernels of integral representations) on toric varieties from a convex integer polytope. The algorithm is implemented in the Maple computer algebra system. The constructed volume forms are similar to the volume forms of the Fubini–Study metric on a complex projective space and can be used for constructing integral representations of holomorphic functions in polycircular regions of a multidimensional complex space.