УДК 532.528; 536.25

Численное исследование процессов в суперкавитационном испарителе с учетом термодинамических эффектов

В.А. Кулагин*, Т.А. Пьяных

Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный,79

Received 18.05.2013, received in revised form 24.07.2013, accepted 12.08.2013

В статье предложена математическая модель кавитационных течений, учитывающая термодинамические эффекты. Представлены результаты моделирования рабочих процессов суперкавитационного испарителя. Расчетами установлено, что в результате кавитационного испарения при заданных условиях температура в объеме каверны понижалась. Также обнаружено повышение температуры в области замыкания каверны.

Ключевые слова: суперкавитационный испаритель, математическая модель, гомогенный поток, тепломассообмен.

Введение

В условиях обострения дефицита пресной воды актуальность совершенствования существующих и разработки новых методов кондиционирования воды питьевого назначения не вызывает сомнений. Одним из перспективных способов обессоливания воды является применение суперкавитационных испарителей.

В отличие от известных методов процесс испарения в аппаратах суперкавитирующего типа осуществляется за счет создания развитого кавитационного течения при обтекании недогретой жидкостью кавитатора с последующим отбором пара из образовавшихся каверн [1]. Здесь высокая интенсивность теплообмена по сравнению с другими способами генерирования пара объясняется особенностями процесса испарения с поверхности каверны. Например, если при теплоотдаче от стенки к кипящей в трубе жидкости паровые пузырьки образуются вследствие фазового перехода, требующего перегрева жидкости и повышения давления пара в пузырьке по отношению к давлению в окружающей жидкости, то при испарении жидкости в каверну наблюдается совершенно иная картина. В этом случае каверна образуется за счет гидродинамики потока – увеличения местных скоростей течения при обтекании кавитатора и, соответственно, уменьшения давления ниже давления насыщенных паров. Вследствие этого при суперкавитационном испарении возникает ряд дополнительных движущих сил и факторов, усиливающих испарение с поверхности каверны: разность температур, обусловленная

[©] Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: vak-sfu@mail.ru

гидродинамическим перепадом давления, разность парциальных давлений водяного пара в жидкости и в каверне и др.

С увеличением температуры жидкости влияние тепломассообменных процессов на геометрические параметры кавитационных полостей становится существенным. При изменении температуры от 10 до 110 °C отношение плотности жидкости к плотности пара падает в 100 раз, что в сочетании с высоким значением теплоты парообразования оказывает существенное влияние температурного поля на кавитационное течение. Как видно из графиков, представленных на рис. 1, наклон касательной к линии насыщения водяного пара увеличивается [2].

Теплота парообразования, плотности жидкой и паровой фазы воды и давление связаны уравнением Клапейрона-Клаузиуса:

$$\frac{\partial P}{\partial T} = \frac{L}{T(v'' - v')}.$$
(1)

Для изотермических случаев интенсивность кавитации при течении жидкостей определяется числом кавитации $\sigma_{\infty} = (P_{\infty} - P_{\nu}(T_{\infty}))/0.5 \rho_l U_{\infty}^2$, которое включает в себя постоянное давление насыщения при заданной температуре жидкости $P_{\nu}(T_{\infty})$. Для неизотермических случаев в число кавитации $\sigma = (P_{\infty} - P_{\nu}(T))/0.5 \rho_l U_{\infty}^2$ входит давление насыщения, выраженное в виде функции от локальной температуры $P_{\nu}(T)$. Принимая функцию $P_{\nu}(T)$ в рассматриваемом интервале ΔT непрерывной и ограничиваясь двумя первыми членами ряда Тейлора, получим уравнение

$$\sigma = \sigma_{\infty} - \frac{\partial P}{\partial T} \frac{\Delta T}{\frac{1}{2} \rho U_{\infty}^2}; \ \Delta T = T - T_{\infty} < 0.$$
⁽²⁾

Уравнение (2) определяет зависимость числа кавитации от температуры. Как видно из этого уравнения, местное понижение температуры приведет к увеличению числа кавитации и, следовательно, понизит кавитационную интенсивность [3].

Рис. 1. Зависимость давления насыщения водяного пара от температуры: *а* – кривая насыщения водяного пара; *б* – скорость изменения давления насыщения от температуры

Математическая модель суперкавитационного испарителя

Для моделирования рабочих процессов суперкавитационного испарителя использовалась модель двухфазного гомогенного потока. Эта модель основывается на предположении локального кинематического и термодинамического равновесия между фазами и не предполагает поверхность раздела между паром и водой. Здесь не учитывается выделение тепла за счет вязкостного трения, а принимается условие, что температурное поле определяется только испарением и конденсацией. Кавитационное течение жикости в этом случае описывается уравнениями неразрывности, сохранения момента импульса, уравнением сохранения энергии и уравнением переноса жидкой фазы, представленными в стационарном виде [3–7]:

$$\frac{\partial \left(\rho_m u_j\right)}{\partial x_j} = 0, \tag{3}$$

$$\frac{\partial \left(\rho_{m}u_{i}u_{j}\right)}{\partial x_{j}} = -\frac{\partial P}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\left(\mu_{m} + \mu_{T}\right) \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3} \frac{\partial u_{k}}{\partial x_{k}} \delta_{ij} \right) \right], \tag{4}$$

$$\frac{\partial}{\partial x_{j}} \left[\rho_{m} u_{j} \left(h + f_{v} L \right) \right] = \frac{\partial}{\partial x_{j}} \left[\left(\frac{\mu_{m}}{P r_{m}} + \frac{\mu_{T}}{P r_{T}} \right) \frac{\partial h}{\partial x_{j}} \right], \tag{5}$$

$$\frac{\partial \left(\alpha_{i} u_{j}\right)}{\partial x_{i}} = m^{+} + m^{-}, \tag{6}$$

где ρ_m – плотность смеси; L – теплота парообразования; μ_m – коэффициент динамической вязкости смеси; P – давление; h – удельная энтальпия жидкости; Pr – число Прандтля.

Теплофизические параметры смеси ϕ_m и массовая доля пара f_v определяются выражениями

$$\phi_m = \alpha_l \phi_l + (1 - \alpha_l) \phi_v, \tag{7}$$

$$f_{\nu} = \frac{\rho_{\nu} \left(1 - \alpha_{l}\right)}{\rho_{m}},\tag{8}$$

где α_l – объемная доля жидкости.

Источниковый m^+ и стоковый m^- члены в уравнении (6) определяют соответственно скорости испарения и конденсации. Они зависят от многих факторов и их формулировка в настоящее время не унифицирована для различных конструктивных и режимных параметров, встречающихся в различных прикладных задачах. Обзор методов определения этих членов приведен в [8]. Здесь предполагается определение этих членов с помощью уравнения Рэлея-Плессета, учитывающего вязкость жидкости и поверхностное натяжение при пульсациях пузырька в жидкости [9, 10]. Таким образом, источниковый и стоковый члены определяются по соответствующим уравнениям:

$$m^{+} = -F_{\nu} \frac{3\alpha_{nuc}\alpha_{l}\rho_{\nu}}{R_{B}} \sqrt{\frac{2}{3}max\left(\frac{P_{\nu} - P(T)}{\rho}, 0\right)}, \qquad (9)$$
$$- 500 -$$

$$m^{-} = F_{c} \frac{3(1-\alpha_{l}) \rho}{R_{B}} \sqrt{\frac{2}{3}} \left| min\left(\frac{P_{v} - P(T)}{\rho}, 0\right) \right|.$$
(10)

Эмпирические постоянные F_v и F_c в этих уравнениях учитывают тот факт, что процессы конденсации и испарения имеют различные временные масштабы – процесс конденсации протекает медленнее испарения [11]. Присутствующие в воде сферические пузырьки неконденсирующегося газа являются зародышами для образующихся паровых полостей. Для расчетов принимались следующие значения: объемная доля неконденсированного газа в воде α_{nuc} равна 5·10⁻⁵, а радиус зародышей кавитации $R_B = 10^{-6}$ м, $F_v = 50$ и $F_c = 0,01$.

Для учета турбулентности использовалась *k* – є модель. Уравнения переноса кинетической энергии турбулентности *k* и ее диссипации є имеют вид

$$\frac{\partial \left(\rho_{m} u_{j} k\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\left(\mu_{L} + \frac{\mu_{T}}{q_{k}}\right) \frac{\partial k}{\partial x_{j}} \right) + G - \rho_{m} \varepsilon$$
(11)

$$\frac{\partial \left(\rho_{m} u_{j} \varepsilon\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\left(\mu_{L} + \frac{\mu_{T}}{\sigma_{\varepsilon}}\right) \frac{\partial \varepsilon}{\partial x_{j}} \right) + C_{1} \frac{\varepsilon}{k} G - C_{2} \rho_{m} \frac{\varepsilon}{k},$$
(12)

где скорость генерации турбулентности *G* и тензор напряжений Рейнольдса определяются по соответствующим уравнениям:

$$\mathbf{G} = \tau_{ij} \frac{\partial u_i}{\partial x_j},\tag{13}$$

$$\tau_{ij} = -\overline{\rho_m u'_i u'_j} = \mu_T \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2 \rho_m k \delta_{ij}}{3}.$$
(14)

Турбулентная вязкость µ_T определяется по формуле

$$\mu_T = \frac{\rho_m C_\mu k^2}{\epsilon}.$$
(15)

Эмпирические константы имеют следующие значения: $\sigma_k = 1,0$; $\sigma_{\varepsilon} = 1,3$; $C_1 = 1,44$; $C_2 = 1,92$, $C_{\mu} = 0,09$.

Объемная доля фазы может изменяться от нуля до единицы в зависимости от занимаемого пространства в двухфазном потоке. Согласно тому, что фазы должны полностью заполнять весь объем, получаем уравнение

$$\sum_{i=1}^{2} \alpha_i = 1.$$
 (16)

Геометрия и граничные условия

На рисунке 2 представлена геометрия рабочего участка суперкавитационного испарителя с обозначением граничных условий. В рабочем участке длиной H = 470 мм и диаметром $D_0 = 70$ мм установлен кавитатор на расстоянии h = 50 мм от входа в рабочий участок. В качестве кавитатора использовался конус с углом раствора 53 °. Исследования проводились в условиях, когда влияние стеснения потока на форму и размеры каверны существенно. Степень

Рис. 2. Геометрия рабочего участка суперкавитационного испарителя с обозначением граничных условий: 1 и 2 соответственно вход и выход из рабочего участка, 3 – стенки, 4 – отбор пара из каверны, 5 – условия симметрии

Рис. 3. Расчетная сетка

стеснения потока d/D₀ принималась равной 0,24. Через трубку, расположенную вдоль оси рабочего участка, осуществлялся отбор пара из каверны.

Как видно из рис. 3, расчетная сетка состоит из гексаэдрических элементов и имеет специальное сгущение в месте предполагаемого образования каверны. Задача рассматривается в стационарной осесимметричной постановке. Для замыкания системы уравнений принимаем следующие граничные условия: на входе в рабочий участок задана скорость 6 м/с, линейный масштаб 0,005 и интенсивность турбулентности 0,03, объемные доли пара и воды 0,0 и 1,0 соответственно, а на выходе – давление равно 147 кПа. На стенках скорость задана равной нулю. Расчеты проводились для воды, температура которой принималась равной 110 °C, что соответствует максимальной температуре воды на входе в первую ступень испарения большинства современных испарительных установок [12]. В основании кавитатора осуществлялся отбор пара в количестве 0,0414 кг/ч. Теплофизические параметры воды и пара принимались согласно [2].

Результаты численного исследования

В результате вычислений были получены поля скоростей, давлений, температуры и доли пара в смеси, а также распределение кинетической энергии и скорость диссипации. Частично результаты представлены на рис. 4.

Рис. 4. Результаты численного моделирования: а – доля пара; б – температурное поле; в – поле давлений

На рисунке 4*a* отображена зависимость объемной доли пара в потоке смеси от координат. Как видно, область фазового перехода имеет довольно тонкую границу, что объясняется высокими градиентами давления в этой области (рис. 4*в*). Расчетная длина каверны для заданных условий составила 12 мм. Как видно из рис. 4*6*, температура в каверне уменьшилась относительно температуры на входе в рабочий участок приблизительно на 38 °C, а в области замыкания каверны выросла на 24 °C. Данный эффект объясняется повышением давления в этой области и процессом вихреобразования. Таким образом, в небольшом объеме в месте замыкания каверны образуется достаточно высокое тепловыделение за счет конденсации пара, что является причиной роста температуры в этой области. Как показали результаты расчета, заданный отбор пара из каверны не разрушает ее, что объясняется интенсивным испарением на ее поверхности и устойчивой граничной динамикой.

Заключение

В статье представлена аналитическая зависимость числа кавитации от температуры, из которой видно, что с уменьшением температуры интенсивность кавитации в потоке воды по-

нижается. В случае повышения температуры воды, поступающей в рабочий участок суперкавитационного испарителя, и увеличения пароотбора из каверны влияние термодинамических эффектов усиливается. В этой связи разработана математическая модель, позволяющая проводить расчетные исследования кавитационных течений с учетом термодинамических эффектов. Проведено моделирование рабочих процессов суперкавитационного испарителя. Полученные расчетные результаты хорошо согласуются с экспериментальными данными. Суперкавитационный метод является перспективным способом опреснения воды и требует дальнейшего изучения и развития.

Список литературы

[1] Ивченко В.М., Кулагин В.А., Немчин А.Ф. Кавитационная технология: монография. Красноярск: Изд-во КГУ, 1990. 200 с.

[2] Ривкин С.Л., Александров А.А. Теплофизические свойства воды и водяного пара. М.: Энергия, 1980. 424 с.

[3] *Goel T., Zhao J., Thakur S. and all //* International Journal for Numerical Methods in Fluids, 58 (2008) 969–1007.

[4] Utturkar Y., Wu J., Wang G., Shyy W. // Prog. Aerospace Sci., 41 (7) (2005) 558-608.

[5] *Wu J.Y.* Filter Based Modeling of Unsteady Turbulent Cavitating Flow Computational, Ph.D. Thesis, University of Florida, Gainesville, 2005.

[6] Tseng C.-C., Shyy W. // International Journal of Heat and Mass Transfer, 53 (2010) 513–525.

[7] Senocak I., Shyy W. // International Journal for Numerical Methods in Fluids, 44 (2004) 997–1016.

[8] Кулагин В.А., Пьяных Т.А. // Журнал СФУ. Сер. Техника и технологии. 1 (2012 5) 57-62.

[9] Маркина Н.Л. Численное моделирование кавитационных течений: дис. ... канд. физ.мат. наук: 01.02.05. Москва, 2011. 107 с.

[10] Zwart P.J., Gerber A.G., Belamri T. // International Conference on Multiphase Flow, 152 (2004) 45–56.

[11] Baradaran Fard M., Nikseresht A.H. // Scientia Iranica, Transactions B: Mechanical Engineering, 19 (2012) 1258–1264.

[12] Мелинова Л.В. Автореф. дис. ... канд. техн. наук, М., 2004. 17 с.

Numerical Study of Processes in Supercavitation Evaporator Considering Thermodynamic Effects

Vladimir A. Kulagin and Tatyana A. Pyanykh Siberian Federal University

79 Svobodny, Krasnoyarsk, 660041 Russia

The article proposes a mathematical model of cavitational flows, considering thermodynamic effects. Outputs of simulation work flows supercavitating evaporator are presented. It was found out that during cavitation evaporation under the given conditions a temperature in cavern decreases. The temperature increases nearby cavern closing area.

Keywords: supercavitation evaporator, mathematical model, homogeneous flow, heat and mass transfer.