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In the present paper we give the calculation of Mellin transform for the monomial function of the vector-

solution to the general polynomial system. We essentially use linearization of the system. In scalar case
it defines bijective change of variables. In case of the system of equations we weaken requirements on the

mapping given by the linearization: it is proper and its degree is equal to one.
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Introduction
Consider a polynomial map
P=(P,...,P,):C"— C".

We assume that the sets A% C 7% of exponents of the monomials in polynomials F; are fixed
while all the coefficients vary. Then we say that P is a general polynomial map from C™ to C”.
It defines a general system of polynomial equations of the form

Z ag\i)ykzO,izl,...,n (1)
A€ A
with unknown y = (y1,...,y,) € C™ and variable coefficients aE\i), where A% ¢ 7 are fixed

finite subsets, A = (A1,..., ), ¥ = y{\‘ .. ny
In 1921 Mellin [1] presented an integral formula and series expansion for the positive power
y"(z) of the function y(x) defined by the general (reduced) algebraic equation

Yy 4oy —1=0, (2)
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m > Al > ... > AP > 1. This result was extensively applied by the Krasnoyarsk School (see, for
example [2],[3]) in the investigation of the monodromy of the general algebraic function.
The aim of our study is to calculate the Mellin transform for monomial function

1 1
= = ; >0 3
yu( LU) yi“( CE) . yﬁ"( {E) y M (,LL1, a,u‘n) , pi > U, ( )

composed of coordinates of the solution y(x) to the reduced polynomial system of the form

v 3 D —1=0, i=1,...n, (4)
AEA)
where the matrix of the columns of distinguished exponents (d(l),...,d(”)) =: D is non-

degenerate and A := A\ {d(? 0}. As a rule, the system (1) can be reduced to the form
(4) (see [4]). Now we consider the case of diagonal matrix D with positive integer diagonal
elements my,...,m,. Let A be the disjunctive union of A(Y), and let N be the cardinality of
A, i.e., the number of coefficients in system (4). The set of these coeflicients is a vector space
CM = CA, where the coordinates of points x = (x)) are indexed by the elements A\ € A. We usu-
ally distinguish the group of coordinates corresponding to the indices A € A® by writing z(%).
Let #A® be the cardinality of the set A). We will assume that all sets A() lie in the interior of
the simplex with vertices 0, myeq,...,mye,, where ey, ..., e, is a basis in Z™. In other words all
points A € A have nonzero coordinates and satisfy the following condition

zn: <£i<i>,A> <1, (5)

i=1

where d® are columns of the matrix D := D=L,

In Section 1 we discuss the definition and the Jacobian of linearization (£, W) — (z,y)
of system (4) which is the main tool in calculations of the Mellin transform for the monomial
function (3). Section 2 contains the main results of the present paper. The first one is Theorem 1
which states that the mapping ® defined by the linearization ({,W) — (x,y) is proper and its
degree deg ® is equal to one. The second one is Theorem 2 which gives the Mellin transform for
the monomial function (3).

1. Linearization of the system (4)

Let T™ be the complex algebraic torus. We regard (4) as a system of equations in the space

CA x T™ with coordinates z = (:1:&“) , ¥y = (y1,--.,yn) and introduce a change of variables

(&,W) — (x,y) in C* x T™ by putting

x(;) _ jﬁy)W*D’\, AeAD =1 n,

R 0

~ n _ (g ~ T F(n i
whete W = (Wi,..., W), W-DA — lei (d ,A>’ wbh — (Wd(l)’.,.,Wd( )) e ( g))

Therefore we can write (4) as a sys_tem of linear equations

Wi=1+ > &, i=1,...n (7)
AeA()
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If we define a change of variables £ — x in the space of coefficients C* by the formula

, ()
V=T [1+ Y W CAeAD =1 n, (8)
k=1 rEAR)
then vector y (—z(§)) takes the following form
y(~2(8) = (W(€)", (9)

where W (&) = (W1 (€W), ..., W, (™)) is formed from the linear functions (7).

The idea of linearizing an algebraic equation by using a change of variables of this type is
due to Mellin. It was realized by Mellin in [1] (see also [5]) in order to obtain the integral
representation and series expansion for the solution of algebraic equation (2). In [6] this trick
was applied to the "triangular" system when the first equation depends only on y;, the second
one depends only on ¥,y and so on. Analogous linearization of the system (4) was given in [7]
with a view to calculate Mellin transform for the monomial function of the following type

M1

Y () =yt (@) - yhn (@), = (s ooy pin) 5 s > 0.

The main result of [7] is the power series expansion of the function y*(x). This expansion was
given using the formal calculation of the Mellin transform for M [y*(z)].

Further we need to consider the restriction ® of the mapping (Cév — CI given by (8) on the
positive orthant Rf .

Lemma 1. The Jacobian of the mapping ® is equal to

i i

o) o T E 0N I
A TTw. rea® 1+ , 10
o = LIW: 22 | e a0

i=1 q=1|I|=greAl | T 1 Jia

me e
where I is an odered set 1 < iy < -+ < ig <n, T = (ri1,...,7%) is an element of Cartesian

product AT = A1) x ... x A6 and &, = [] &+

iel

Proof. The Jacobi matrix of the change of variables (8) has a block structure with n? blocks.
There are square blocks on the diagonal of the matrix. The diagonal elements of ith diagonal
block are of the following type

&’CE\i) (4) (1) 157—1 —Dx
oc® (1_<d ’A>5A Wi )W ’
A
the elements outside the diagonal in this block are
8x(i) . ) _
2 = = (@9, 0) 0wt
oY)
The nondiagonal (4, k)-block contains the following elements
657(-k) A 7
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The computation gives us

((L‘ n - ¥ . <J(i),A>71
H Aea(® det 5in _ Z <d(j)7 )\> g\k) 7
€ i=1 AeA(R) k=T
where 5% is the Kronecker symbol, j,k=1,...,n

The last determinant may be reduced by the formula:

A AR
det(E + A) —1+ZZ Co ]
q1u|qA“f LA

tq

where E is an unit matrix, A = (Aj ) is an arbitrary matrix of order n, and I is an ordered set
1<i <. <ig<n.
All that now remains to be written is that

- @921 Al1 ... An

?:U AR LYY

g=1|I|=q A“ A

where A:; = > ((V — < dt )\>) fg\“% r,l=1,...,q, and ¢] is the Kronecker symbol. Hence
AeAlir)
we get the desired formula (10). O

2. Mellin transform for the function ﬁ

We consider the monomial function (3) where y;(—x) are branches with conditions y;(0) = 1,
i =1,...,n. Let us recall that Mellin transform of the functlon ( is defined by the following

v o= / e )
I z1— 1

where 27" = ] 23Nt dx = day - - dey (see, for example [5]). To calculate the integral
(11) we counsider the transformatlon ¢ — z (or a mapping ® : RY — RY) given by (8).

integral

Theorem 1. The mapping ® is proper. Its degree deg @ is correctly defined and deg® = 1.

Proof. We prove that @(aRf ) = (“)IRf . Further we miss the upper index in the notations
xf\i), g\i), and write xy, &, for simplicity. Note that any coordinate plane £, = 0 is mapped to
coordinate plane x) = 0. Moreover, the boundary points of the orthant are mapped only to the
boundary points. If a sequence £) Rf , k € N, converges to the boundary point £ € 8Rf
then the sequence of images ®(£(F)), k € N, also converges to a boundary point of the orthant.
We are now going to prove that condition £(*) — 400 implies z*) = &(£(*)) — 4-00. Note that

(k) may be finite in case when the corresponding coordinate g&’“’ tends to +oo, but

’z(k)‘ = Zx&k) — +00

AEA

coordinate xy
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when

’g(’@‘ =5 el - foo.

AEA
Using assumption (5) for any A € A one can choose such a real positive n-dimensional vectors
= (7“3\), pr = (pg\) that
<$j),A>+r?=p?, Ip*| = 1. (12)
Using the well-known Jensen inequality
a1171 . afl” < pirai + -+ ppan,

which is valid for any positive numbers ay,...,an, p1,-..,Pn, y.p; = 1, and conditions (12) we
get the following estimates:

A A

S = e (W) = e (wie®) (we) " =
AEA AeA AEA
(k)
(Y)" . (k) D IR
S S WED) o em ST () e g
ggA <p>‘,W(f(k))> ( (5 )) )%1:\ <p)‘,W(§(k))> ( (f )) 1 N )\EAfg\k)) ( )
€
where r = (ry,...,ry), 7y = minr}. If 37 fg\k) — 400, then the last term in (13) tends to infinity
XEA Xh

also. So, we proved that mapping ® is proper. In spherical compactification of the space RY the
closure of the orthant Rf is a manifold with a piecewise smooth boundary 8]1@_7 . Consequently,
the mapping @ transforms a manifold with boundary to a manifold with boundary.

As the mapping @ is proper, it follows that for any inner noncritical value x € (Rf )0 full
preimage ®~1(x) being discrete and compact is a finite set. Hence one can define the degree of
the mapping @ : Rf — Rf as follows

I(x)

deg,® = Z sgn%. (14)
§:@(=x

The degree does not depend on the choice of noncritical value z € Rf . To prove that we fix an
arbitrary bounded neighborhood V' C Rf of the point z € Rf and a set U such that V C ®(U).
One can represent the degree deg,® by the following integral

dog, ® = /8 (@) ~a),

where w is the Poincaré form (see [8, II, Ch. 3]). This integral takes integer values and continu-
ously depends on x € V therefore deg ® is a constant. So we proved that degree of the mapping
® does not depend on the choice of noncritical point z.

All that now remains to be shown is that deg® = 1. In order to do that we use the following
fact: the degree of the restriction (I)|8R+A—7 coincides with the degree deg® (see [8, II, Ch. 3]). We
apply induction on dimension N. In the case N = 1 the mapping ® is

r=€£14+¢", 0<r<1. (15)

The function (15) is increasing so it implies that deg® = 1. In the case N = 2 the restriction
®|¢,—o also has the form (15) therefore deg ®[¢,—o = 1. So the degree of the mapping ® : R3 —
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Ri is equal to one also. For an arbitrary dimension N the restriction of the mapping ® on
every face {{x = 0} of the orthant Rf remains in the same class of the mappings. By inductive

assumption we conclude that deg® = 1. O
We shall interpret the set A as a matrix A = (A A0 ) = ()\1, ce )\N) , whose columns
are the vectors \¥ = ()\’f, RN n) of exponents of the monomlals in (4). Here the ordering of the

columns \¥ inside each block A is arbitrary but fixed.

We introduce two n x N matrices ¥ := DA, ¥ := U — X, where x is the matrix whose ith
row x; is the characteristic function of the subset A®) C A, that is, it has 1 on places A € A(®
and 0 elsewhere. We denote the rows of the matrices U and ¥ by ¥1,...,%, and {bvl, . ,@Zn
respectively. For any ordered set J = {ji,...,jq} 1 < j1 < ... < jq < n, we fix the set of
columns 7 = (771,...,794) € AV := AU x ... x AU«) and introduce g x g-matrix ¥ ;(7). Denote
by Aj(7) the determinant of the matrix £ — ¥ ;(7), where E is g-order unit matrix. The same
determinants Ay(7) arise in formula (10).

Theorem 2. The Mellin transform defined by the integral (11) is equal to

M[ i ](z "F<<07(j),u>+<{/5j72>)P(<XJ72>)Q(

I R T ({d0), 1) + (55, 2) +1) 7 "

where Q(z) is a polynomial of the form

35T} (55) 5 800

9=0|J|=qj¢J
The integral (11) converges under the following conditions
Rezy >0, \ € A, Re(<d(l ,u> <¢z, >) >0,i=1,...,n

Proof. Theorem 1 argues validity of the change of variables (8) in the integral (11). Thus it
follows from Lemma 1 that the integral (11) in coordinates & looks like:

/ 1+ZZ S A &g
I (7)&7 WDn+z+1

RY q=1|J|=q TeA’

5(1 “ dg(
—H/R,,Am Y Y Y A

q=1]J|=q €A’

—I+6%, )
d§( , (1,...,1), ieJ
T ) ) ) ) 1
XH/RM“) d“u + (i, 2)+ 9 { (0,...,0), i¢J. (17)

All integrals in (17) may be calculated by the formula (see [9, formula 4.638(2)]):

/ v~ dw CT(z1) - T2l (s — 21 — - — 2g) (18)
R (L+ay+--+x,) I'(s) '
In view of conditions Res > 0, Rez; > 0, ¢ =1,...,qon convergence of the integral (18) the inte-

grals in (17) converge under the following conditions Re z) > 0, A € A, Re (< > (14, >>
0,2=1,...,.n
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All that remains is to apply the formula (18) to the integrals in (17). So we obtain the
required expression (16) for the Mellin transform. O
The first author’s work was carried out with the financial support of RFBR (grant 11-01-
00852) and Ministry of Education and Science of Russian Federation (grant 1.34.11). The second
author’s work was carried out with the financial support of RFBR (grant 12-01-31021-mol_a).
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IIpeobpazoBanne MenanHa MOHOMHUAJBHBIX (DYHKIWIT pelie-
HUs OOIeil MoJIMHOMUAJbHON CUCTEMBI

Npuna A. ArTumonBa
Tarbgana B. 3nikoBa

B nacmosawet cmamove svnucasemcea npeobpazosarue Mearurna monomuaivtolt Gynkuuy pewernus 06-
weth NOAUHOMUAALHOT cucmemdvt. TIpu 9mom cyuLecmeento ucnoab3yemes AUHEAPUIGUUSL CUCTNEMDBL, KO-
Mopas 6 CKAAAPHOM Cayuae onpedensem OUeKMuUSHYIO 3ameny nepemenmnol. B caywae cucmemvt ypas-
HeHUT MPEbOBAHUA K SUHEAPUIAUUL 0CAADAEHVL: OHG onpedeasem cobcmeenHnoe omobpasicerue, cmenets
KOMOP020 Pasra eduHuye.

Knaoueswie caosa: npeobpazosarue Mearuna, arzebpauveckoe ypasreHue.
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