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In the present paper we give the calculation of Mellin transform for the monomial function of the vector-

solution to the general polynomial system. We essentially use linearization of the system. In scalar case

it defines bijective change of variables. In case of the system of equations we weaken requirements on the

mapping given by the linearization: it is proper and its degree is equal to one.
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Introduction

Consider a polynomial map

P = (P1, . . . , Pn) : C
n → C

n.

We assume that the sets A(i) ⊂ Z
n
+ of exponents of the monomials in polynomials Pi are fixed

while all the coefficients vary. Then we say that P is a general polynomial map from C
n to C

n.

It defines a general system of polynomial equations of the form

∑

λ∈A(i)

a
(i)
λ yλ = 0, i = 1, . . . , n (1)

with unknown y = (y1, . . . , yn) ∈ C
n and variable coefficients a

(i)
λ , where A(i) ⊂ Z

n
+ are fixed

finite subsets, λ = (λ1, . . . , λn), y
λ = yλ1

1 . . . yλn

1 .

In 1921 Mellin [1] presented an integral formula and series expansion for the positive power

yµ(x) of the function y(x) defined by the general (reduced) algebraic equation

ym + x1y
λ1

+ · · · + xpy
λp

− 1 = 0, (2)
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m > λ1 > · · · > λp > 1. This result was extensively applied by the Krasnoyarsk School (see, for

example [2],[3]) in the investigation of the monodromy of the general algebraic function.

The aim of our study is to calculate the Mellin transform for monomial function

1

yµ(−x)
:=

1

yµ1

1 (−x) · · · yµn
n (−x)

, µ = (µ1, . . . , µn) , µi > 0, (3)

composed of coordinates of the solution y(x) to the reduced polynomial system of the form

yd
(i)

+
∑

λ∈Λ(i)

x
(i)
λ yλ − 1 = 0, i = 1, . . . , n, (4)

where the matrix of the columns of distinguished exponents
(
d(1), . . . , d(n)

)
=: D is non-

degenerate and Λ(i) := A(i)\
{
d(i), 0

}
. As a rule, the system (1) can be reduced to the form

(4) (see [4]). Now we consider the case of diagonal matrix D with positive integer diagonal

elements m1, . . . ,mn. Let Λ be the disjunctive union of Λ(i), and let N be the cardinality of

Λ, i.e., the number of coefficients in system (4). The set of these coefficients is a vector space

C
Λ ∼= C

Λ
x , where the coordinates of points x = (xλ) are indexed by the elements λ ∈ Λ. We usu-

ally distinguish the group of coordinates corresponding to the indices λ ∈ Λ(i) by writing x(i).

Let ♯Λ(i) be the cardinality of the set Λ(i). We will assume that all sets Λ(i) lie in the interior of

the simplex with vertices 0, m1e1, . . . ,mnen, where e1, . . . , en is a basis in Z
n. In other words all

points λ ∈ Λ have nonzero coordinates and satisfy the following condition

n∑

i=1

〈
d̃(i), λ

〉
< 1, (5)

where d̃(i) are columns of the matrix D̃ := D−1.

In Section 1 we discuss the definition and the Jacobian of linearization (ξ,W ) → (x, y)

of system (4) which is the main tool in calculations of the Mellin transform for the monomial

function (3). Section 2 contains the main results of the present paper. The first one is Theorem 1

which states that the mapping Φ defined by the linearization (ξ,W ) → (x, y) is proper and its

degree deg Φ is equal to one. The second one is Theorem 2 which gives the Mellin transform for

the monomial function (3).

1. Linearization of the system (4)

Let T
n be the complex algebraic torus. We regard (4) as a system of equations in the space

C
Λ × T

n with coordinates x =
(
x

(i)
λ

)
, y = (y1, . . . , yn) and introduce a change of variables

(ξ,W ) → (x, y) in C
Λ × T

n by putting

x
(i)
λ = −ξ

(i)
λ W−D̃λ, λ ∈ Λ(i), i = 1, . . . , n,

y = W D̃,
(6)

where W = (W1, . . . ,Wn) , W
−D̃λ =

n∏
i=1

W
−〈d̃(i),λ〉
i , W D̃ =

(
W d̃(1) , . . . ,W d̃(n)

)
, ξ =

(
ξ
(i)
λ

)
.

Therefore we can write (4) as a system of linear equations

Wi = 1 +
∑

λ∈Λ(i)

ξ
(i)
λ , i = 1, . . . , n. (7)
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If we define a change of variables ξ → x in the space of coefficients C
Λ by the formula

x
(i)
λ = ξ

(i)
λ

n∏

k=1


1 +

∑

τ∈Λ(k)

ξ(k)τ




−〈d̃(k),λ〉

, λ ∈ Λ(i), i = 1, . . . , n, (8)

then vector y (−x(ξ)) takes the following form

y (−x(ξ)) = (W (ξ))
D̃
, (9)

where W (ξ) =
(
W1

(
ξ(1)

)
, . . . ,Wn

(
ξ(n)

))
is formed from the linear functions (7).

The idea of linearizing an algebraic equation by using a change of variables of this type is

due to Mellin. It was realized by Mellin in [1] (see also [5]) in order to obtain the integral

representation and series expansion for the solution of algebraic equation (2). In [6] this trick

was applied to the "triangular" system when the first equation depends only on y1, the second

one depends only on y1, y2 and so on. Analogous linearization of the system (4) was given in [7]

with a view to calculate Mellin transform for the monomial function of the following type

yµ(x) := yµ1

1 (x) · · · yµn
n (x), µ = (µ1, . . . , µn) , µi > 0.

The main result of [7] is the power series expansion of the function yµ(x). This expansion was

given using the formal calculation of the Mellin transform for M [yµ(x)] .

Further we need to consider the restriction Φ of the mapping C
N
ξ → C

N
x given by (8) on the

positive orthant R
N
+ .

Lemma 1. The Jacobian of the mapping Φ is equal to

∂(x)

∂(ξ)
=

n∏

i=1

W

−
∑

λ∈Λ(i)
〈d̃(i),λ〉−1

i


1 +

n∑

q=1

∑

|I|=q

∑

τ∈ΛI

∣∣∣∣∣∣∣∣∣

1 −
τ

i1
i1

mi1
. . . −

τ
i1
iq

mi1

. . . . . . . . .

−
τ

iq
i1

miq
. . . 1 −

τ
iq
iq

miq

∣∣∣∣∣∣∣∣∣

ξτ


 , (10)

where I is an odered set 1 6 i1 < · · · < iq 6 n, τ = (τ i1 , . . . , τ iq ) is an element of Cartesian

product ΛI = Λ(i1) × · · · × Λ(iq), and ξτ =
∏
i∈I

ξτ i .

Proof. The Jacobi matrix of the change of variables (8) has a block structure with n2 blocks.

There are square blocks on the diagonal of the matrix. The diagonal elements of ith diagonal

block are of the following type

∂x
(i)
λ

∂ξ
(i)
λ

=
(
1 −

〈
d̃(i), λ

〉
ξ
(i)
λ W−1

i

)
W−D̃λ;

the elements outside the diagonal in this block are

∂x
(i)
λ

∂ξ
(i)
τ

= −
〈
d̃(i), λ

〉
ξ
(i)
λ W−1

i W−D̃λ.

The nondiagonal (i, k)-block contains the following elements

∂x
(i)
λ

∂ξ
(k)
τ

= −
〈
d̃(i), λ

〉
ξ
(i)
λ W−1

i W−D̃λ, k 6= i.
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The computation gives us

∂(x)

∂(ξ)
=

n∏

i=1

W

−
∑

λ∈Λ(i)
〈d̃(i),λ〉−1

i det


δjkWj −

∑

λ∈Λ(k)

〈
d̃(j), λ

〉
ξ
(k)
λ




j,k=1,n

,

where δjk is the Kronecker symbol, j, k = 1, . . . , n.

The last determinant may be reduced by the formula:

det(E +A) = 1 +
n∑

q=1

∑

|I|=q

∣∣∣∣∣∣∣

Ai1i1 . . . Ai1iq
. . . . . . . . .

A
iq
i1

. . . A
iq
iq

∣∣∣∣∣∣∣
,

where E is an unit matrix, A = (Aji ) is an arbitrary matrix of order n, and I is an ordered set

1 6 i1 < . . . < iq 6 n.

All that now remains to be written is that

∂(x)

∂(ξ)
=

n∏

i=1

W

−
∑

λ∈Λ(i)
〈d̃(i),λ〉−1

i


1 +

n∑

q=1

∑

|I|=q

∣∣∣∣∣∣∣

Ai1i1 . . . Ai1iq
. . . . . . . . .

A
iq
i1

. . . A
iq
iq

∣∣∣∣∣∣∣


 ,

where Airil =
∑

λ∈Λ(ir)

(
δrl −

〈
d̃(il), λ

〉)
ξ
(ir)
λ , r, l = 1, . . . , q, and δrl is the Kronecker symbol. Hence

we get the desired formula (10). �

2. Mellin transform for the function 1
yµ(−x)

We consider the monomial function (3) where yj(−x) are branches with conditions yi(0) = 1,

i = 1, . . . , n. Let us recall that Mellin transform of the function 1
yµ(−x) is defined by the following

integral

M

[
1

yµ(−x)

]
(z) =

∫

R
N
+

1

yµ(−x)
xz−Idx, (11)

where xz−I = xz1−1
1 · · ·xzN−1

N , dx = dx1 · · · dxN (see, for example [5]). To calculate the integral

(11) we consider the transformation ξ → x (or a mapping Φ : R
N
+ → R

N
+ ) given by (8).

Theorem 1. The mapping Φ is proper. Its degree deg Φ is correctly defined and deg Φ = 1.

Proof. We prove that Φ(∂R
N
+ ) = ∂R

N
+ . Further we miss the upper index in the notations

x
(i)
λ , ξ

(i)
λ , and write xλ, ξλ for simplicity. Note that any coordinate plane ξλ = 0 is mapped to

coordinate plane xλ = 0. Moreover, the boundary points of the orthant are mapped only to the

boundary points. If a sequence ξ(k) ∈ R
N
+ , k ∈ N, converges to the boundary point ξ ∈ ∂R

N
+

then the sequence of images Φ(ξ(k)), k ∈ N, also converges to a boundary point of the orthant.

We are now going to prove that condition ξ(k) → +∞ implies x(k) = Φ(ξ(k)) → +∞. Note that

coordinate x
(k)
λ may be finite in case when the corresponding coordinate ξ

(k)
λ tends to +∞, but

∣∣∣x(k)
∣∣∣ :=

∑

λ∈Λ

x
(k)
λ → +∞
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when ∣∣∣ξ(k)
∣∣∣ =

∑

λ∈Λ

ξ
(k)
λ → +∞.

Using assumption (5) for any λ ∈ Λ one can choose such a real positive n-dimensional vectors

rλ = (rλj ), pλ = (pλj ) that 〈
d̃(j), λ

〉
+ rλj = pλj , |p

λ| = 1. (12)

Using the well-known Jensen inequality

ap11 . . . apn
n 6 p1a1 + · · · + pnan,

which is valid for any positive numbers a1, . . . , an, p1, . . . , pn,
∑
pi = 1, and conditions (12) we

get the following estimates:

∑

λ∈Λ

x
(k)
λ =

∑

λ∈Λ

ξ
(k)
λ

(
W (ξ(k))

)−D̃λ

=
∑

λ∈Λ

ξ
(k)
λ

(
W (ξ(k))

)rλ (
W (ξ(k))

)−pλ

>

>
∑

λ∈Λ

ξ
(k)
λ

(
W (ξ(k))

)rλ

〈
pλ,W (ξ(k))

〉 >

(
W (ξ(k))

)r ∑

λ∈Λ

ξ
(k)
λ〈

pλ,W (ξ(k))
〉 >

(
W (ξ(k))

)r
∑
λ∈Λ

ξ
(k)
λ

1 +
∑
λ∈Λ

ξ
(k)
λ

, (13)

where r = (r1, . . . , rn) , rj = min
λ∈Λ

rλj . If
∑
λ∈Λ

ξ
(k)
λ → +∞, then the last term in (13) tends to infinity

also. So, we proved that mapping Φ is proper. In spherical compactification of the space R
N the

closure of the orthant R
N
+ is a manifold with a piecewise smooth boundary ∂R

N
+ . Consequently,

the mapping Φ transforms a manifold with boundary to a manifold with boundary.

As the mapping Φ is proper, it follows that for any inner noncritical value x ∈
(
R
N
+

)o
full

preimage Φ−1(x) being discrete and compact is a finite set. Hence one can define the degree of

the mapping Φ : R
N
+ → R

N
+ as follows

degxΦ =
∑

ξ:Φ(ξ)=x

sgn
∂(x)

∂(ξ)
. (14)

The degree does not depend on the choice of noncritical value x ∈ R
N
+ . To prove that we fix an

arbitrary bounded neighborhood V ⊂ R
N
+ of the point x ∈ R

N
+ and a set U such that V ⊂ Φ(U).

One can represent the degree degxΦ by the following integral

degxΦ =

∫

∂U

ω(Φ(ξ) − x),

where ω is the Poincaré form (see [8, II, Ch. 3]). This integral takes integer values and continu-

ously depends on x ∈ V therefore deg Φ is a constant. So we proved that degree of the mapping

Φ does not depend on the choice of noncritical point x.

All that now remains to be shown is that degΦ = 1. In order to do that we use the following

fact: the degree of the restriction Φ|∂R
N
+

coincides with the degree degΦ (see [8, II, Ch. 3]). We

apply induction on dimension N . In the case N = 1 the mapping Φ is

x = ξ(1 + ξ)−r, 0 < r < 1. (15)

The function (15) is increasing so it implies that deg Φ = 1. In the case N = 2 the restriction

Φ|ξλ=0 also has the form (15) therefore deg Φ|ξλ=0 = 1. So the degree of the mapping Φ : R
2
+ →
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R
2
+ is equal to one also. For an arbitrary dimension N the restriction of the mapping Φ on

every face {ξλ = 0} of the orthant R
N
+ remains in the same class of the mappings. By inductive

assumption we conclude that degΦ = 1. �

We shall interpret the set Λ as a matrix Λ =
(
Λ(1), . . . ,Λ(n)

)
=

(
λ1, . . . , λN

)
, whose columns

are the vectors λk =
(
λk1 , . . . , λ

k
n

)
of exponents of the monomials in (4). Here the ordering of the

columns λk inside each block Λ(i) is arbitrary but fixed.

We introduce two n × N matrices Ψ := D̃Λ, Ψ̃ := Ψ − χ, where χ is the matrix whose ith

row χi is the characteristic function of the subset Λ(i) ⊂ Λ, that is, it has 1 on places λ ∈ Λ(i)

and 0 elsewhere. We denote the rows of the matrices Ψ and Ψ̃ by ψ1, . . . , ψn and ψ̃1, . . . , ψ̃n
respectively. For any ordered set J = {j1, . . . , jq} 1 6 j1 < . . . < jq 6 n, we fix the set of

columns τ =
(
τ j1 , . . . , τ jq

)
∈ ΛJ := Λ(j1) × . . .×Λ(jq) and introduce q× q-matrix ΨJ(τ). Denote

by ∆J (τ) the determinant of the matrix E − ΨJ (τ), where E is q-order unit matrix. The same

determinants ∆I(τ) arise in formula (10).

Theorem 2. The Mellin transform defined by the integral (11) is equal to

M

[
1

yµ(−x)

]
(z) =

n∏

j=1

Γ
(〈
d̃(j), µ

〉
+

〈
ψ̃j , z

〉)
Γ (〈χj , z〉)

Γ
(〈
d̃(j), µ

〉
+ 〈ψj , z〉 + 1

) Q(z), (16)

where Q(z) is a polynomial of the form

Q(z) =

n∑

q=0

∑

|J|=q

∏

j /∈J

(〈
d̃(j), µ

〉
+

〈
ψ̃j , z

〉) ∑

τ∈ΛJ

∆J(τ)zτ .

The integral (11) converges under the following conditions

Re zλ > 0, λ ∈ Λ, Re
(〈
d̃(i), µ

〉
+

〈
ψ̃i, z

〉)
> 0, i = 1, . . . , n.

Proof. Theorem 1 argues validity of the change of variables (8) in the integral (11). Thus it

follows from Lemma 1 that the integral (11) in coordinates ξ looks like:

∫

R
N
+


1 +

n∑

q=1

∑

|J|=q

∑

τ∈ΛJ

∆J (τ)ξτ


 ξz−I dξ

W D̃µ+Ψz+I
=

=

n∏

i=1

∫

R
♯Λ(i)

+

ξ(i)
z(i)−I

dξ(i)

W
〈d̃(i),µ〉+〈ψi,z〉+1

i

+

n∑

q=1

∑

|J|=q

∑

τ∈ΛJ

∆J (τ)×

×
n∏

i=1

∫

R
♯Λ(i)

+

ξ(i)
z(i)−I+δi

J dξ(i)

W
〈d̃(i),µ〉+〈ψi,z〉+1

i

, δiJ =

{
(1, . . . , 1), i ∈ J,

(0, . . . , 0), i /∈ J.
(17)

All integrals in (17) may be calculated by the formula (see [9, formula 4.638(2)]):

∫

R
q
+

xz−I dx

(1 + x1 + · · · + xq)s
=

Γ(z1) · ... · Γ(zq)Γ(s− z1 − · · · − zq)

Γ(s)
. (18)

In view of conditions Re s > 0, Re zi > 0, i = 1, . . . , q on convergence of the integral (18) the inte-

grals in (17) converge under the following conditions Re zλ > 0, λ ∈ Λ, Re
(〈
d̃(i), µ

〉
+ 〈ψi, z〉

)
>

0, i = 1, ..., n.
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All that remains is to apply the formula (18) to the integrals in (17). So we obtain the

required expression (16) for the Mellin transform. �
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Преобразование Меллина мономиальных функций реше-
ния общей полиномиальной системы

Ирина А. Антипова

Татьяна В. Зыкова

В настоящей статье вычисляется преобразование Меллина мономиальной функции решения об-

щей полиномиальной системы. При этом существенно используется линеаризация системы, ко-

торая в скалярном случае определяет биективную замену переменной. В случае системы урав-

нений требования к линеаризации ослаблены: она определяет собственное отображение, степень

которого равна единице.

Ключевые слова: преобразование Меллина, алгебраическое уравнение.
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