ФАЗОВЫЕ ОТНОШЕНИЯ В СИСТЕМЕ Bi₂O₃ – BiPO₄ Бабицкий Н.А. Отинова С.А, научный руководитель д-р хим. наук Жереб В.П.

Сибирский федеральный университет

Большое значение для современного материаловедения имеют оксидные материалы на основе оксида висмута Bi_2O_3 , что определено широким набором свойств материалов разного химического и фазового состава. Использование оксида висмута в материалах электронной (пьезо, сегнето и антисегнетоэлектрики, ионные проводники), лазерной техники уже давно является широко распространенной практикой, однако, по-прежнему эта область привлекает внимание исследователей.

Чистая полутораюкись висмута Bi_2O_3 проявляет ряд особенностей в фазообразовании, которые уже достаточно хорошо изучены. Известны 4 модификации, две из них стабильны и две метастабильны. Относительно недавно было открыто еще 2 модификации Bi_2O_3 орторомбическая (ϵ) и триклинная (ω), которые могут быть получены лишь в весьма экзотических условиях.

Однако, несмотря на интенсивные исследования, остается множество вопросов, касающихся фазообразования в оксидных системах на основе Bi_2O_3 . Связать это можно, пожалуй, с метастабильным фазообразованием и высокой кристаллохимической активностью висмута. В настоящей работе мы попытаемся внести ясность в фазовые отношения в системе Bi_2O_3 - P_2O_5 в интервале концентраций 0-50 мол% P_2O_5 .

В литературе представлено две диаграммы состояния стабильного равновесия (рисунок 1) и одна метастабильного (рисунок 2), кроме того, представлены данные о структуре некоторых двойных оксидов. Но в целом остается множество нерешенных вопросов, касающихся как фазообразования так и структуры фаз.

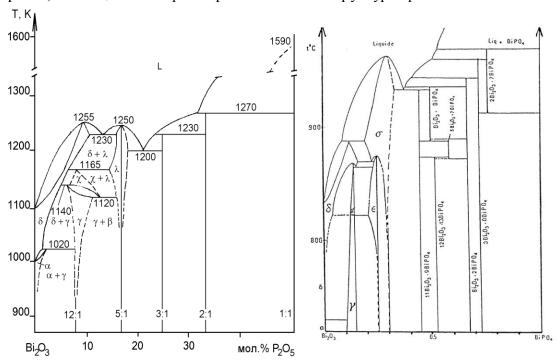


Рисунок 1 – Диаграммы стабильного равновесия для системы Bi₂O₃-P₂O₅

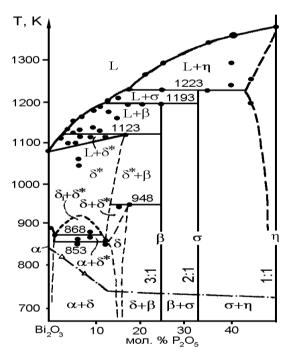


Рисунок 2 – Диаграммы стабильного равновесия для системы Bi₂O₃-P₂O₅

Исследование фазообразования в системе Bi_2O_3 - P_2O_5 в предлагаемой работе ограничено ортофосфатом висмута $BiPO_4$. В качестве исходных реактивов использовались Bi_2O_3 (Ос.Ч) и $BiPO_4$, синтезированный осаждением из раствора (квалификация на уровне ЧДА). Стехиометрические навески отжигались при температурах от 650 °C и выше в течении различного времени, что позволило установить характер фазовых отношений и подобрать оптимальные времена синтеза. Для большинства составов отжиг в течение суток приводил к образованию равновесной смеси фаз, и дальнейшее увеличение времени отжига не влияло на фазовый состав.

Описание фазовых отношений начнем по мере увеличения доли оксида фосфора. Вблизи оксида висмута как и во многих оксидных системах присутствует фаза со структурой силленита. Область гомогенности по нашим данным 5,7-6,9 мол% P_2O_5 . Данные ДТА подтверждают наличие фазового перехода при 815 °C. Интересно поведение системы при закаливании от температуры выше 800 °C. При закалке на воздухе образуется смесь силленита и метастабильной γ -модификации оксида висмута, что также отмечалось в литературе. Последняя судя по всему стабилизируется на поверхности изоструктурного ей силленита. Отдельный интерес вызвало появление в образце состава $7,7Bi_2O_3$ - $92,3P_2O_5$ после закалки из расплава δ - Bi_2O_3 . Эта высокотемпературная модификация в чистом виде не была получена при комнатной температуре, однако введение оксида фосфора ее видимо стабилизирует, также возможное объяснение можно найти в присутствии на диаграмме в этой области концентраций двух фаз со структурой флюорита ϵ и σ (рисунок 1).

Нам удалось несколько уточнить температурный интервал существования фазы ε. На диаграмме, построенной ранее она устойчива от комнатной температуры, в действительности же на рентгенограмме рефлексы, отвечающие этой фазе, появляются только после отжига выше 700 °C.

Уточнение фазовых отношений при больших концентрациях оксида фосфора сводится к тому, что фаза $5 \text{Bi}_2 \text{O}_3\text{--}7 \text{BiPO}_4$, отмеченная на диаграмме, судя по всему, является лишь

промежуточной фазой при перетектоидной реакции превращения $12Bi_2O_3$ - $13BiPO_4$ в Bi_2O_3 - $BiPO_4$. Т.е. она не должна присутствовать на стабильной диаграмме состояния, выделить ее в чистом виде нам не удалось и предложенный состав является, видимо, оценочным. В подтверждение вышесказанного можно добавить и то, что фаза $5Bi_2O_3$ - $7BiPO_4$ появляется лишь при переходе при нагреве, но не при охлаждении (снижении температуры отжига). Также удивительным для нас стало появление жидкой фазы при температуре 920° С и составе $5Bi_2O_3$ - $7BiPO_4$. Единственно возможное объяснение это плавление метастабильной фазы при температуре значительно ниже появления стабильной жидкости. Кроме того, нам не удалось зафиксировать высокотемпературную фазу $2Bi_2O_3$ - $7BiPO_4$.

Ряд особенностей фазообразования можно связать со структурой фаз. Разумеется нет данных о структуре всех представленных на диаграмме фаз, однако, исходя из общих закономерностей можно говорить о том, что образование в ряде случаев высокотемпературных фаз требует значительного (2-3 суток) времени отжига. Это можно связать с большим размером ячейки и сложным упорядочением кристалла.

Дальнейшие исследования в этой системе позволят пролить свет на некоторые особенности кристаллохимии висмуга и вероятно дадут новые материалы с интересными свойствами.