СТАБИЛИЗАЦИЯ ВЯЗКОСТИ АНОДНОЙ МАССЫ ЗА СЧЕТ УПРАВЛЕНИЯ ШИХТОВКОЙ ПЕКА ПРИ ТЕРМОСТАТИРОВАНИИ И ДОЗИРОВКОЙ ПЕКА

Рыбаков А.А.

научный руководитель д-р технических наук Твердохлебов В. П. Сибирский федеральный университет

Аноды алюминиевых электролизеров играют одну из важнейших ролей в технологии электролитического производства алюминия. Одним из основных требований к самообжигающемуся аноду алюминиевого электролизера является однородность обожженной части анодного массива, которая достигается за счет стабилизации пластических свойств анодной массы.

Анодная масса на ОАО «РУСАЛ Красноярск» производиться из нефтяного кокса и каменноугольного пека.

Пластические свойства анодной массы зависят от множества факторов. Одними из основных факторов, влияющих на пластические свойства анодной массы являются:

- дозировка связующего (каменноугольного пека) в анодную массу;
- качественные характеристики связующего.

Целью данной работы является определение влияния качественных характеристик связующего и то, как его дозировка (процентное содержание)влияет на вязкость анодной массы.

Исходя из цели работы была составлена программа, включающая следующие этапы:

- 1. Оценка влияния шихтовки разных пеков от их пропорционального содержания на качественные характеристики связующего.
- 2. Мониторинг влияния свойств пека на вязкость а/м и управление вязкостью а/м путем изменения дозировки пека.
 - 3. Исследование влияния вязкости а/м на пластичность поверхности анода.

В течение 2011 года на ОАО «РУСАЛ Красноярск» поступал каменноугольный пек от 7 поставщиков: ЗСМК, Китай, Авдеевский КХЗ, Запорожкокс, Арселор Миталл Темиртау, Днепродзержинск, ММК

Вовлекаемые в производство анодной массы пеки, как правило, соответствуют по качеству требованиям спецификаций на поставку сырья и технологического регламента. Однако на протяжении нескольких месяцев наблюдается технологические расстройства, такие как отложения в технологических пекопроводах и пекоплавителях, расслоение технологической смеси пека, образование поверхностной пленки.

На ОАО «РУСАЛ Красноярск» поступает пек как в жидком, так и в гранулированном виде. Для проведения лабораторных исследований были отобраны каменноугольные пеки семи поставщиков.

Изготовитель		T	Летучие	H/T	$_{\rm H/T}$	Смо	К.О	Дистил.	Сумма
		разм.		%	%	л. %	%		баллов
3СМК	Знач.	116	58,0	30,5	5,4	25,1	56	2,0	15
	Балл	5	1			4	0	5	
Китай	Знач.	112	58,4	32,8	7,0	25,8	56	3,2	10
	Балл	3	1			5	0	1	
Авдеевский КХЗ	Знач.	111	53,0	35,5	12	23,5	59	2,2	17
	Балл	2	5			2	4	4	
Запорожкокс	Знач.	112	53,0	37,0	13	24	60	2,6	19
	Балл	3	5			3	3	5]
Темиртау	Знач.	114	59,0	30,5	5,4	25,1	57	2,4	13
	Балл	4	0			4	2	3]
Днепродзержинкс.	Знач.	110	54,8	33,4	11	21,6	56	3,6	4
KX3	Балл	1	3			0	0	0	
Магнитогорск.	Знач.	108	55,5	32,6	10	22,6	56	2,8	7
MK	Балл	0	4			1	0	2	

Минимальное количество баллов (4) имеет пек Днепродзержинского КХЗ, а максимальное количество баллов (19) имеет пек ОАО «Запорожкокс». Необходимо отметить также, что пек ММК имеет одно из низких количество баллов (7), а объем поставок пека ММК на ОАО «РУСАЛ Красноярск» в 2011 году составляет 70%.

Одной из основных задач в данной работе является оценка влияния шихтовки различных пеков от их пропорционального содержания. В настоящее время поставляемые на ОАО «РУСАЛ Красноярск» пеки смешиваются в хаотическом порядке, то есть шихтовка пеков производится исходя из объемов поставок того или иного пека. Для того чтобы оценить можно или нет смешивать пеки с различными качественными характеристиками, было предложено определить плотность пеков различных поставщиков.

В связи с ограниченным временем для выполнения работы было принято определить только те качественные характеристики отобранных проб технологической смеси пеков, на которые требуется минимальное время, а именно: температура размягчения и вязкость.

Во время проведения исследования в пекоплавители 14-15 был загружен пек трех поставщиков: Китай, Темиртау и ММК; в объемах 20%, 20% и 60% соответственно. В случае если в процессе препарирования и циркуляции технологической смеси пеков произошло перемешивание пеков различных поставщиков, то качественные характеристики технологической смеси пеков должны иметь усредненные значения, которые представлены в таблице.

Проба		Температура	Вязкость при	Вязкость при
No	% заполнения	размягчения по	155, сПз	185, сПз
	пекоплавителя	Метлеру °С		
1	90	111	2895	350
2	65	113	3040	420
3	45	109	2975	330
Среднее		111	2970	367

Средние значения проб технологического пека с пекоплавителя и усредненные расчетные значения пеков дозированных в пекоплавитель имеют практически одинаковые значения:

- температура размягчения пека увеличилась на 1 °C (с 110 до 111),
- вязкость пека при 155°C увеличилась на 470 сПз,
- вязкость пека при 185°C увеличилась на 25 сПз.

Данный факт можно объяснить тем, что в процессе препарирования пека удаляется влага и происходит выделение легколетучих фракций пека, что должно незначительно увеличить температуру размягчения пека и его вязкость.

Другим немаловажным и с моей точки зрения основным фактом является то, что качественные характеристики технологической смеси пека в процессе её выработки из пекоплавителя изменяются значительно и если сопоставить полученные данные с плотностью пека, то видно, что изменение качественных характеристик технологической смеси пеков напрямую зависят от плотности пеков используемых в технологической смеси.

Данные по пробам технологической смеси пеков				Данные по пробам пека от различных поставщиков					
Проб. №	Т разм. по Метлеру °С	Вязк 155,	Вязк 185,	Прим.	Поста	Т разм.	Вязк 155, сПз	Вязк 185, сПз	Плотн.
	метлеру С	сПз	гоз, сПз		вщик	Метлер. °С	CII3		г/см ³
1	111	2895	350	Соответств ует пеку Китай	Китай	112	2747	338	1,32
2	113	3040	420	Соответств ует пеку Темиртау	Темир	114	3309	445	1,26
3	109	2975	330	Соответств ует пеку ММК	ММК	108	2147	309	1,25

Смешения пеков в технологической смеси не происходит, а в процесс производства из пекоплавителя в первую очередь уходит более тяжелый пек (с наибольшей плотностью), а затем более легкие пеки (плотность пеков уменьшается). Данный факт объясняется тем, что пекопровод, из которого осуществляется расход пека из пекоплавителя, врезан в нижнюю часть пекоплавителя, исходя из этого, в процесс производства вначале вовлекается более тяжелый пек, а затем более легкий.

В настоящее время на ОАО «РУСАЛ Красноярск» пеки различных поставщиков с различными качественными характеристиками смешиваются в хаотичном порядке. Особого внимания к различным качественным характеристикам поступаемого пека не придается большого значения. Поставляемые пеки практически полностью соответствуют требованиям, предъявляемым к ним в спецификациях;

В процессе смешения пеков различных поставщиков не происходит усреднение качественных характеристик технологической смеси пека. Основной причиной этому может служить разница в плотностях смешиваемых пеков;

Рекомендуется в схему контроля качественных характеристик поставляемых пеков и технологической смеси пеков внести показатель плотности пеков. Результаты по определению плотности поставляемых пеков использовать для того, чтобы смешивать пеки с одинаковой или близкой плотностью вместе пекоплавителе). Использование данного показателя получать позволит технологическую смесь пеков с одинаковыми свойствами, а не так как это происходит в настоящее время. Смешиваются пеки с различными плотностями, что не приводит к усреднению их свойств. Технологическая смесь пеков расслаивается в пекоплавителе, что в свою очередь сильно увеличивает вариативность качественных свойств вовлекаемого пека и, как следствие, вариативность качественных характеристик анодной массы.

Выводы:

- Существующая методика управления производством анодной массы исходя из её вязкостных характеристик работоспособна. Методика позволяет поддерживать стабильную пластичность поверхности анодного массива, однако при снижении температуры окружающей среды ниже -15°C увеличивается забор корректировочной массы с повышенным содержанием пека. Исходя из этого, необходимо изменять целевую вязкость производимой анодной массы в зимний период времени (при снижении температуры окружающей среды ниже 15°C).
 - 1.В процессе смешения пеков различных поставщиков не происходит усреднение качественных характеристик технологической смеси пека. Основной причиной этому может служить разница в плотностях смешиваемых пеков.
 - 2. Рекомендуется в схему контроля качественных характеристик поставляемых пеков и технологической смеси пеков внести показатель плотности пеков. Использование данного показателя позволит получать технологическую смесь пеков с одинаковыми свойствами, а не так как это происходит в настоящее время.

- 3. Использование пеков с различными качественными характеристиками не влияет на изменение вязкостных характеристик анодной массы. Изменение качественных характеристик пека не влияет на вязкость анодной массы, но, несомненно, влияет на другие качественные характеристики анодной массы.
- 4. Вязкость анодной массы имеет ожидаемую зависимость от дозировки пека в анодную массу. Принцип управления вязкостью анодной массы по действующей методике показал свою работоспособность. Методика позволяет поддерживать стабильную пластичность поверхности анодного массива, однако при снижении температуры окружающей среды ниже -15°C увеличивается забор корректировочной массы с повышенным содержанием пека. Исходя из этого, необходимо изменять целевую вязкость производимой анодной массы в зимний период времени (при снижении температуры окружающей среды ниже -15 С°