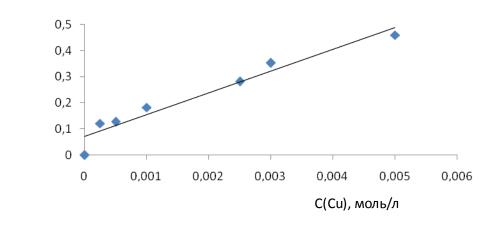
СОРБЦИОННОЕ КОНЦЕНТРИРОВАНИЕ И РАЗДЕЛЕНИЕ ИОНОВ CU(II) И ZN(II) НА НЕКОТОРЫХ ИОНИТАХ ИЗ ХЛОРИДНЫХ РАСТВОРОВ Кузнепова М.Л.

Научный руководитель: к.х.н Кононова О.Н. Сибирский Федеральный Университет

<u>Целью данной работы</u> является исследование процесса извлечения меди(II) и цинка(II) на различных анионитах.

Выбор объектов исследования:

Наиболее перспективным и экономически выгодным методом извлечения переходных металлов является сорбционное концентрирование с использованием характеризующихся высокой ионитов разных типов, эффективностью избирательностью. Для реализации ЭТОГО необходимы метода промышленно доступные, недефицитные, легко регенерируемые или угилизируемые сорбенты. Поэтому в данной работе проведен поиск селективных сорбентов для сорбционного извлечения меди (II) и цинка (II) из хлоридных сред на различных типах сорбентов. На предварительно проведенных исследований, в которых сорбенты зарекомендовали себя как наиболее селективные по отношению к ионам меди (II) и цинка(II), нами были взяты для исследования аниониты: Purolite S-985, AM-2Б, Purolite A 500.


Ход работы:

Α

• Определение меди (II) фотометрическим методом с рубеановодородной кислотой

Метод основан на фотометрировании комплекса меди(II) с рубеановодородной кислотой зеленовато-черного цвета, образующегося в слабокислой среде, рН 3,8–4,3. Измерение оптической плотности производят при 690 нм [1].

В мерные колбы на 25 мл вводят по 10 мл раствора $CuSO_4$: $5H_2O$ следующих концентраций: 0,01, 0,005, 0,003, 0,0025, 0,001, 0,0005, 0,00025, добавляют к ним по 1 мл рубеановодородной кислоты. По полученным данным строят градуировочный график в координатах A = f(C). Градуировочный график приведен на рисунке.

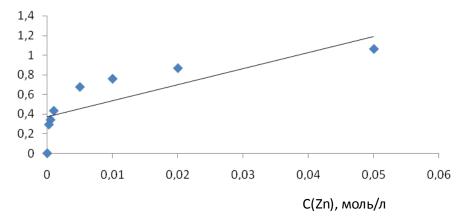

y = 83,03x + 0,072

Рисунок 1 - Зависимость оптической плотности растворов от концентрации Cu(II)

Метод основан на фотометрировании комплекса цинка(II) с ПАН в присутствии ацетатного буфера. Медь маскируют раствором тиосульфата натрия. Измерение оптической плотности производят при 580 нм [2].

В мерные колбы на 25 мл вводили по 10 мл раствора $ZnSO_4$ следующих концентраций: 0,05, 0,02, 0,01, 0,005, 0,001, 0,0005, 0,00025. В каждую мерную колбу добавляли по 1 мл раствора 1-(2-пиридилазо)-2-нафтола, 5 мл ацетатного буфера и 2-3 капли раствора тиосульфата натрия. По полученным данным строили градуировочный график в координатах A = f(C). Градуировочный график приведен на рисунке 2.

 $y = 16,29\,x + 0,375$ Рисунок 2 - Зависимость оптической плотности растворов от концентрации Zn(II)

• Сорбция в статических условиях

0,1 г ионита заливали 10,0 мл растворов $CuSO_4 \cdot 5H_2O$ и $ZnSO_4$ в HCl разной концентрации (0,01 и 2 М), оставляли растворы на 24 ч. После достижения равновесия проводили фотометрическое определение меди (II), при длине волны 690 нм; фотометрическое определение цинка(II), при длине волны 580 нм. Затем рассчитывали статическую обменную емкость, коэффициент распределения D и процент извлечения R.

Результаты:

Нами исследованы аниониты: S-985, A 500 (фирма "Purolite", Великобритания) и АМ-2Б (фирма "Токем", Кемерово, Россия). Следует отметить, что аниониты, синтезированные фирмой Purolite, являются новыми образцами, ранее не исследованными при сорбции меди и цинка (при совместном присутствии), в отличие от АМ-2Б, широко используемого для извлечения ионов переходных металлов.

Таблица 1 — Данные сорбционного концентрирования Cu (II) и Zn (II) с концентрациями 3ммоль/л из хлоридных растворов на исследуемых ионитах

Определяемый элемент	ионит	С(НСІ), моль/л	Параметры сорбции		
			СОЕ, ммоль/г	D, ммоль/мл	R,%
Си (сисх=Зммоль/л)	S985	2	0,09	90	90
	A500		0,08	40	80
	АМ-2Б		0,063	17,03	63
	S985	0,01	0,077	33,48	77
	A500		0,074	28,46	74
	АМ-2Б		0,051	10,41	51
Zn	S985	2	0,259	63,17	86,3
$(c_{ucx}=3_{MMOЛЬ}/_{Л})$	A500		0,222	28,46	74

АМ-2Б		0,274	105,4	91,3
S985	0,01	0	0	0
A500		0	0	0
АМ-2Б		0	0	0

Таблица 2 — Данные сорбционного концентрирования Cu (II) и Zn (II) с концентрациями 1ммоль/л из хлоридных растворов на исследуемых ионитах

концентрациями тямолья из клоридных растьоров на неследуемых испитах						
Определяемый	ионит	C(HCl), моль/л	Параметры сорбции		ИИ	
элемент						
			OE,	D,	R,%	
			ммоль/г	ммоль/мл		
$Cu (c_{ucx}=1$ ммоль/л)	S985	2	0,271	93,45	90,3	
	A500		0,266	78,2	88,7	
	АМ-2Б		0,249	48,8	83	
	S985	0,01	0,08	3,63	26,67	
	A500		0,06	2,5	20	
	АМ-2Б		0,044	1,72	14,67	
Zn	S985	2	0,045	8,18	45	
$(c_{ucx} = 1_{MMOЛЬ}/л)$	A500		0	0	0	
	АМ-2Б		0,074	28,46	74	
	S985	0,01	0	0	0	
	A500		0	0	0	
	АМ-2Б		0	0	0	

Таблица 3 — Данные сорбционного концентрирования Cu (II) и Zn (II) с концентрациями 3 и 1 ммоль/л соответственно из хлоридных растворов на исследуемых ионитах

Определяемый элемент	ионит	C(HCl), моль/л	Параметры сорбции		
			ОЕ, ммоль/г	D, ммоль/мл	R,%
Си (сисх=Зммоль/л)	S985	2	0,285	190	95
	A500		0,284	177,5	94,7
	АМ-2Б		0,256	58,18	85,3
	S985	0,01	0,1	5	33,3
	A500		0,04	1,54	13,3
	АМ-2Б		0	0	0
Zn	S985	2	0,059	14,3	59
$(c_{ucx} = 1 \text{ ммоль/л})$	A500		0,019	2,35	19
	АМ-2Б		0,063	17,03	63
	S985	0,01	0	0	0
	A500		0	0	0
	АМ-2Б		0	0	0

Как видно из таблиц 1-3, медь и цинк хорошо сорбируются в сильнокислых средах на всех анионитах, независимо от их матрицы и функциональных групп. В слабокислых растворах металлы сорбируются гораздо хуже, это можно объяснить тем,

что в слабокислых средах комплекс меди с хлороводородной кислотой не образуется, а образуется аквакомплекс, который менее устойчив, что же касается цинка, то в слабокислых средах он не образует комплексов и находится в катионном состоянии, следовательно, не сорбируется анионитами.

ВЫВОДЫ

- 1. Изучено сорбционное концентрирование меди (II) и цинка (II) из солянокислых растворов различной концентрации при разном соотношении концентраций металлов.
- 2. Установлено, что все исследуемые аниониты, независимо от их функциональных групп, проявляют высокую сорбционную способность по отношению к ионам меди (II), особенно в сильнокислых средах.
- 3. Установлено, что аниониты AM-2Б и S985 проявляют высокую сорбционную способность по отношению к ионам цинка (II) в сильнокислых средах.
- 4. Установлено, что наилучшая сорбция ионов как меди, так и цинка протекает при концентрации меди (II) 3ммоль/л, и такой же концентрации цинка(II).

Список литературы:

- 1. Фадеева, В.И. Основы аналитической химии. Практическое руководство: Учеб. пособие для вузов / В. И. Фадеева, Т. Н. Шеховцова, В. М. Иванов. М.:Высш. шк., 2001. 463 с.
- 2. Лурье Ю. Ю. Справочник по аналитической химии/ Ю. Ю. Лурье. М.: Химия, 1989. 448 с.