СИНТЕЗ И ОПРЕДЕЛЕНИЕ СТРУКТУРЫ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ПЛАТИНЫ С ПРОИЗВОДНЫМИ 1,2-ДИАМИНЦИКЛОГЕКСАНА Лешок Д.Ю. Научный руководитель д-р хим. наук Кирик С.Д.

Сибирский Федеральный Университет

1. Введение

Проблема онкологических заболеваний является одной из центральных проблем не только медицины, но и всего человечества. В результате многочисленных исследований, проведенных за последние 50 лет, одним из успешных путей ее решения был признан химический — использование лекарственных препаратов, которые обладают селективностью по отношению к различного вида опухолям, не воздействуя в значительной степени на остальной организм. В основе современных лекарственных препаратов такого типа лежат комплексные соединения платины, такие как цисплатин *cis*- $[Pt(NH_3)_2Cl_2]$, являющийся основателем ряда [1,2]; карбоплатин $[Pt(NH_3)_2(COO)_2C(CH_2)_3]$ [3]; оксалиплатин $[Pt(1,2-dach)(COO)_2]$ [4]; тетраплатин $[Pt(1,2-dach)Cl_4]$ [5] и многие другие.

В последнее время в медицине все большее предпочтение отдается тетраплатину как наиболее «мягкому» для организма препарату. Тетраплатин подобен по эффективности цисплатину, но более нефротоксичен по отношению к различного вида опухолям, а также способен воздействовать на те инородные клетки, которые обладают повышенной устойчивостью по отношению к аналогичным лекарственным веществам.

Получение тетраплатина по общепринятой методике [6-8] довольно сложно и требует использования дополнительных реагентов, таких как ДМФА, газообразный хлор и некоторых других, помимо этого используется неоднократное упаривание с последовательным проведением различных химических операций, что существенно понижает выход целевого продукта (54%) и увеличивает продолжительность синтеза. В 2011 году была предложена другая более эффективная методика получения тетраплатина [9], детальное изучение которой показало, что синтез конечного продукта может протекать различными путями. Доказательством этого утверждения стало выделение ряда промежуточных веществ поликристаллического типа с предполагаемой различной структурой, которые, в общем случае, могут служить прекурсорами для получения тетраплатина. Изучение их структуры является важной задачей, позволяющей объяснить закономерности и особенности различных путей реакции и, возможно, в результате подобрать наилучшие условия для синтеза конечного продукта.

2. Экспериментальная часть

2.1 Синтез C₆H₁₀(NH₃)₂[PtCl₄] и 1,2-dach[PtCl₆]·2HCl

В 5 мл конц. НС1 при нагревании до 80-90 °С растворяли в 0,5 г (2,6·10⁻³ моль) PtCl₂. Образовавшийся раствор при 20-25 °С смешивали с раствором, содержащим 5 мл воды и 0,48 г (2.6·10⁻³ моль) 1,2-dach·2HCl. Полученный раствор оставляли медленно кристаллизоваться при 20-25 °С в эксикаторе над плавленой щёлочью. По истечении двух суток образовавшиеся кристаллы отфильтровывали и промывали ледяной уксусной кислотой. Далее после высушивания на воздухе выход $C_6H_{10}(NH_3)_2[PtCl_4]$ составил 75%.

Полученное вещество представляет собой крупные красные кристаллы, хорошо растворимые в воде.

Синтез вещества 1,2-dach[PtCl₆]·2HCl проходил аналогичным образом: при медленном испарении маточного водно-ацетонового раствора 1,2-dachH₂[PtCl₆]·2H₂O, подкисленного конц. HCl, при 20-25 °C образовывался крупнокристаллический осадок. По истечении трёх суток образовавшиеся кристаллы отфильтровывали и промывали ацетоном, с дальнейшим высушиванием на воздухе. Выход 70%. Полученное вещество 1,2dach[PtCl₆]·2HCl представляет собой крупные жёлтые игольчатые кристаллы, при истирании которых образуется жёлтый порошок. Вещество хорошо растворимо в воде и в ацетоне.

2.2 Рентгеноструктурные исследования

Порошковые дифракционные данные получены с использованием Си Кα излучения на дифрактометре X'Pert PRO с детектором PIXcel (Panalytical), снабженным графитовым монохроматором. Напряжение на аноде составляло 40 кВ, сила тока – 30 мА. Образец растирался в ступке и подготавливался методом прямой набивки кюветы. Условия съемки: шаг 0,026°, накопление 4-8 с, диапазон съёмки 3-90°.

Параметры элементарной решетки для обеих структур определялись и уточнялись при помощи программ EXPO2009 [10], FOX [11]. Поиск модели структуры осуществлен методом Монте-Карло в программе FOX [11], уточнение по методу Ритвельда – в программе FullProf [12].

3. Обсуждение результатов

На начальном этапе расшифровки структур исследуемых соединений по известным дифракционным данным были найдены их кристаллографические параметры, представленные в таблице 1:

Химическая		Параметры ячейки					Простр	-	ρ _{расч} ,	R _p ,	
формула	a, Ấ	b, Ấ	c, <i>Å</i>	α, °	β, °	γ, °	V, \mathring{A}^3	. груп- па	Z	Г/СМ 3	%
C ₆ H ₁₀ (NH ₃) ₂ [PtCl ₄]	8,81	8,9 9	7,48	9 0	90	9 0	593	P 2 21 21	2	2,53	8,4 8
1,2-dach[PtCl ₆] ·2HCl	19,2 8	9,9 5	10,3 7	9 0	92,0 6	9 0	199 2	P 21/a	4	1,98	8,1 4

Таблица 1 – Кристаллографические параметры исследуемых соединений

На основании вышеприведенных данных имеет смысл сделать ряд заключений относительно возможного строения изучаемых кристаллических веществ. Пониженная симметрия, заметно различающиеся объем ячейки и плотность позволяют предположить наличие в структурах различных атомных или молекулярных фрагментов, способных менять свою ориентацию посредством некоторых корреляций с другими атомными или молекулярными фрагментами, что приводит к значительному расхождению кристаллографических параметров. Согласно информации о химическом составе изучаемых веществ можно предположить, что таким фрагментом будет HC1. Дальнейшие этапы расшифровки структур подтвердили эту гипотезу. Конечный результат представлен на рисунках 1, 2 и в таблицах 1-3:

Рисунок 1 – Структура элементарной ячейки и соответствующая ей дифрактограмма соединения C₆H₁₀(NH₃)₂[PtCl₄]

Таблица 2 – Основные межатомные расст	ояния в структуре $C_6H_{10}(NH_3)_2[PtCl_4]$
---------------------------------------	---

	Pt–Cl ₁	Pt–Cl ₂	Pt–Cl ₃	$C_1 - N_1$	$C_1 - C_2$	C_2-C_3	N ₁ -H _{1A}	C ₁ –H _{1D}
длина связи, Å	2,335	2,315	2,318	1,487	1,547	1,555	0,960	0,960

Таблица 3 – Основные величины валентных углов в структуре C₆H₁₀(NH₃)₂[PtCl₄]

	Cl ₁ -Pt-Cl ₂	Cl ₁ -Pt-Cl ₃	$C_2-C_1-N_1$	C_1 - C_2 - C_3	$H_{2A}-C_2-H_{2B}$	H_{1A} - N_1 - H_{1B}
угол, ^о	90,97	180,00	117,98	124,77	108,02	109,47

В соединении $C_6H_{10}(NH_3)_2[PtCl_4]$ фрагмент PtCl_4 имеет плоско квадратную форму, а циклогексановое кольцо находится в форме кресла, что в обеих случаях отвечает минимуму энергии.

Рисунок 2 – Структура элементарной ячейки и соответствующая ей дифрактограмма соединения 1,2-dach[PtCl₆]·2HCl

	длина связи, Å		угол, °
Pt-Cl ₁	2,219	Cl ₁ -Pt-Cl ₂	92,18
Pt-Cl ₂	2,230	Cl ₁ -Pt-Cl ₄	179,97
Pt-Cl ₃	2,238	Cl ₃ -Pt-Cl ₄	87,46
Pt-Cl ₄	2,249	C ₂ -C ₁ -C ₆	111,12
Pt-Cl ₅	2,230	C ₂ -C ₁ -N ₁	111,45
C ₁ -N ₁	1,463	C ₁ -C ₂ -C ₃	110,61
C ₂ -C ₃	1,539	C ₃ -C ₄ -C ₅	109,61
C ₂ -N ₂	1,482	N ₂ -C ₂ -H ₂	107,85
H ₁₂ -Ch	2,142	$H_9-C_6-H_{10}$	107,97
C ₆ -H ₁₀	0,959	$C_1 - N_1 - H_{11}$	115,05
N ₂ -H ₁₆	0,959	$H_{15}-N_2-H_{16}$	109,46

Таблица 4 – Длины связей и валентные углы для соединения 1,2-dach[PtCl₆]·2HCl

Также как и в соединении $C_6H_{10}(NH_3)_2[PtCl_4]$, в соединении 1,2-dach[PtCl_6]·2HCl циклогексановое кольцо принимает форму кресла, а PtCl_6 – октаэдра.

Сравнение структур C₆H₁₀(NH₃)₂[PtCl₄] и 1,2-dach[PtCl₆]·2HCl показало, что молекула HCl в соединении 1,2-dach[PtCl₆]·2HCl находится в связанном состоянии, протонируя аминогруппу, что приводит к возникновению водородных связей и, как следствие, сильному увеличению объема элементарной ячейки с понижением симметрии. Присутствие же структурной единицы HCl в соединении 1,2-dach[PtCl₆]·2HCl объясняется условиями синтеза, в частности, подкисленной средой, в которой формировался поликристаллический осадок.

Список литературы

- 1. Guggenheim E.R., Xu D., Zhang C.X. // ChemBioChem. 2009. 10. 141-157.
- 2. Kasherman Y., Sturup S., Gibson D. // J. Biol. Inorg. Chem. 2009. 14. 387-399.
- 3. Blair B.G., Larson C.A., Safaei R. // Clin Cancer Res. 2009. 15. 4312-4321.
- 4. Boulikas T. // Exp. Opin. Investig. Drugs. 2009. 18. 1197-1218.
- 5. Aris S.M., Farrell N.P. // Eur. J. Inorg. Chem. 2009. 10. 1293-1302.
- 6. Wyrig S.D., Chaney S.G. // J. Label. Compounds Radiopharm. 1990. 28. 753-756.
- 7. Eastland G.J. // Drugs Fut. 1987. 12. 139-141.
- 8. Anderson W.K., Quagliato D.A. // Cancer Treat. Rep. 1986. 70. 997-1002.
- 9. Starkov A.K., Mulagaleev R.F., Kirik S.D. // Rus. J. Coord. Chem. 2011. 37. 720.
- 10. Altomare A., Camalli M., Cuocci M. // J. Appl. Cryst. 2009. 36. 127-133.
- 11. Favre-Nicolin V., Cerny R. // J. Appl. Cryst. 2002. 35. 734-743.
- 12. Rodriguez-Carvajal J., FullProf version 4.06, March 2009, ILL (unpublished).