Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

<u>Инстит</u>	ут космических	х и информационных техн	<u>ологий</u>
	_	институт	
-	Вычи	ислительная техника	
		кафедра	
		УТВЕРЖДАК Заведующий в	
		О.В.Не подпись инициа «»	-
	БАКАЛА	АВРСКАЯ РАБОТА	
09.03		ика и вычислительная техниенование направления	ника
Микроко	онтроллерная (система выращивания раст тема	ений
Руководитель	подпись, дата	доцент, канд. техн. наук должность, ученая степень	<u>Н.Ю. Сиротинина</u> инициалы, фамилия
Выпускник	подпись, дата		<u>И.В. Артемьев</u> инициалы, фамилия
Нормоконтролер	подпись, дата		В.И. Иванов инициалы, фамилия

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Анализ задания на ВКР	5
1.1 Сравнение и анализ аналогов	5
1.1.1 Click and Grow	5
1.1.2 Умный горшок для растений Parrot POT	6
1.1.3 Умный горшок Xiaomi Flora Smart Flower Pot	7
1.1.4 Сравнительная таблица функций систем	8
1.2 Выбор программных средств	9
1.3 Формулирование требований к разрабатываемому ПО	10
1.3.1 Требования к функциональным характеристикам	10
1.3.2 Требования к программной документации	11
1.3.3 Стадии и этапы разработки	11
1.4 Вывод по разделу	11
2 Проектирование	12
2.1 Проектирование системы	12
2.2 Выбор языков программирования	13
2.2.1 Система	13
2.2.2 Приложение под Android	14
2.3 Вывод по разделу	15
3 Реализация	16
3.1 Перечень модулей аппаратной части	16
3.1.1 Выбор Bluetooth модуля	16
3.1.2 Выбор датчика влажности почвы	17
3.1.3 Выбор датчика яркости света	18
3.1.4 Датчик температуры и влажности	19
3.1.5 Датчик уровня жидкости	20
3.1.6 Часы реального времени	20
3.1.7 Освещение	21
3.1.8 Насос и вентилятор	25

3.2 Программная часть	25
3.2.1 Программа для Arduino	25
3.2.2 Приложение для Android	2e
3.3 Вывод по разделу	27
4 Описание работы	28
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31

ВВЕДЕНИЕ

Большинство растений очень прихотливы и требуют определённых условий, на поддержку которых требуется много сил и времени. У каждого растения есть свои требования к температуре, влажности и яркости света. Растения нужно вовремя поливать, поддерживать необходимую температуру и влажность. Многие из нас забывали полить цветок или закрыть окно, после чего растение умирало. А самое главное существует огромное количество видов растений и у каждого свои требования.

Целью данной работы является разработка системы, которая будет полностью автоматизировать процессы анализа и поддержки оптимальных условий для растений, а также иметь возможность оповещения пользователя о возникших проблемах и предоставлять показатели датчиков. А также приложение для операционной системы Android, с помощью которого будет осуществляться управления системой вручную и изменение настроек через Bluetooth.

1 Анализ задания на ВКР

1.1 Сравнение и анализ аналогов

В данной сфере существует незначительное количество систем. Многие из них только начинают выходить на российский рынок.

Такими приложениями являются:

- Click and Grow;
- Умный горшок для растений Parrot POT;
- Умный горшок Xiaomi Flora Smart Flower Pot.

Также существуют другие системы, однако вышеперечисленные имеют самый высокий рейтинг в данной области.

1.1.1 Click and Grow

Маленькое приспособление не требует постоянного полива, удобрений и возни в земле. Тут все сделают за тебя встроенные сенсоры и процессоры. Смартпот на пальчиковых батарейках начинает свою работу просто: в него помещают картридж с нужными тебе семенами, ставят самые обычные батарейки и заливают литром воды. Устройство закрывается, и о нем благополучно забываешь на несколько месяцев. На внешней стороне устройства размещен индикатор: в благоприятных условиях он горит зеленым светом, а в критических ситуациях загорится другим. Данная система рассчитана под определённые картриджи, которые имеют высокую стоимость [1].

Рисунок 1 – Система «Click and Grow»

1.1.2 Умный горшок для растений Parrot POT

Белый умный горшок для растений Parrot POT поможет вам вырастить пышное растение прямо на подоконнике. В горшке установлены датчики кислотности, температуры, света и даже 4 форсунки, подающие воду. Специальная программа уже знает, как ухаживать за 8000 растений, а также все данные передаются на ваш смартфон. Цена в официальном магазине re:Store 8990 рублей [2].

Рисунок 2 – Умный горшок для растений Parrot POT

1.1.3 Умный горшок Xiaomi Flora Smart Flower Pot

Умный горшок предназначен для любителей растений, которые очень заняты и не успевают ухаживать за своим питомцем. Смарт-горшок позволит сохранить и сделать максимально комфортной жизнь вашего любимого цветка.

Цветочный горшок заряжается от Micro USB. Батареи хватает от 3 до 6 месяцев работы без подзарядки. Длительность работы зависит от того, как часто вы будете синхронизировать его со смартфоном. При помощи индикатора на боковой стенке вазона можно увидеть характеристики почвы, освещенность и уровень влаги. Все данные отобразятся в приложении, которое синхронизируется через Bluetooth. Если какие-то показатели не соответствуют норме, умный горшок пришлет уведомление на смартфон хозяина [3].

Рисунок 3 – Умный горшок Xiaomi Flora Smart Flower Pot

1.1.4 Сравнительная таблица функций систем

Сравнительная таблица по характеристикам представленных приложений продемонстрирована в таблице 1. В ней проводится сравнение систем по основным параметрам.

Из таблицы видно, что ныне существующие системы имеют очень высокую стоимость, не у всех реализовано мобильное приложение, функции полива и освещения.

Таблица 1 — Характеристики систем

Функции	Parrot POT	Click and Grow	Xiaomi Flora Smart Flower Pot
Влажность	Автополив	Автополив	Оповещает о
			низкой влажности
Мобильное	Да	Нет	Да
приложение			
Освещённость	Оповещает о	Система	Оповещает о
	недостаточном	самостоятельно	недостаточном
	освещении	освещает	освещении
		растение	
Температура	Оповещает о	Нет	Нет
	показателях		
	температуры		
Цена	8990 руб.	6500-8500 руб.	3000 руб.
		+500 рублей за	
		новые картриджи	
Питание	3 месяца	6 месяцев	3 месяца
	автономной	автономной	автономной
	работы,	работы,	работы, зарядка
	батарейки	батарейки	от microUSB
Настройка	Есть база для	Нет	Позволяет
	8000 растений		настраивать
			показатели

1.2 Выбор программных средств

Платформа, на которой будет реализована система, должна иметь возможность связи по Bluetooth, а также подключать различные модули, иметь низкую стоимость и низкую энергозатратность. Приложение требуется написать для смартфона, так как смартфон всегда находится под рукой и удобен в использовании.

Среди ныне популярных операционных систем, Android и iOS, Android имеет большую популярность и возможность бесплатной установки приложения на телефон.

1.3 Формулирование требований к разрабатываемому ПО

Целью данной выпускной квалификационной работы является разработка системы управления процессом выращивания растений и мобильного приложения для ОС Android. Проанализировав сравнительную таблицу, можно сделать вывод, что главным недостатком нынешних систем, является высокая стоимость.

Разрабатываемая система должна быть проста в использовании, иметь понятное мобильное приложение с обратной связью, возможность выбора параметров из существующей базы и возможность установки своих параметров.

Система должна обеспечивать автономный рост растения на долгое время, а для этого требуется большой запас воды, энергии и низкую энергозатратность.

1.3.1 Требования к функциональным характеристикам

Необходимо разработать систему, включающую в себя следующие функции:

- Настройка необходимых начальных параметров для растения (температура, влажность окружающей среды, влажность почвы, яркость света);
- Автоматический полив при низких показателях влажности;
- Оповещение пользователя о малом запасе воды и о плохих условиях для растения;
- Вывод текущих показателей на смартфон пользователя.

1.3.2 Требования к программной документации

Разрабатываемый проект должен сопровождаться руководством для пользователя. Помимо этого, должны быть описаны технические возможности системы, интерфейс приложения, инструкция по настройке и требования к аппаратной и программной конфигурациям.

1.3.3 Стадии и этапы разработки

Порядок разработки приложения:

- Анализ предметной области;
- Разработка технического задания;
- Освоение программных средств;
- Разработка системы;
- Написание приложения для телефона;
- Проведение отладки продукта;
- Создание руководства пользователя;
- Оформление пояснительной записки.

1.4 Вывод по разделу

Учитывая все вышеперечисленные проблемы систем для автоматического выращивания растений, которые созданы за последнее время, необходимо разработать систему, которая будет включать в себя все функции текущих конкурентов, и иметь стоимость ниже, чем у аналогов.

2 Проектирование

2.1 Проектирование системы

Структурная схема разрабатываемой системы представлена на рисунке 4.

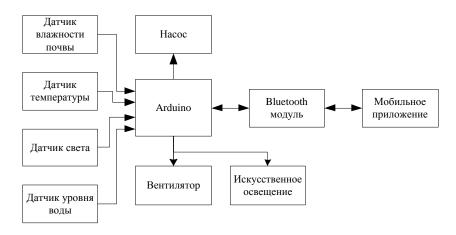


Рисунок 4 – Структурная схема разрабатываемой системы

Разрабатываемый программный продукт должен состоять из самой системы и мобильного приложения. Система передачу всех данных мобильному приложению, полив, искусственное освещение, включение и отключение вентилятора.

Общий принцип работы приложения:

- 1. При заходе клиент подключается к устройству, и при необходимости, выбирает нужные параметры.
 - 2. Датчики передают показатели на плату.
- 3. Плата получает показатели, анализирует и передаёт на приложение пользователя, так же при выходе каких-либо показателей за пределы оповещает об этом или решает проблему самостоятельно.
- 4. Приложение предоставляет пользователю все показатели с датчиков и информирует о необходимых действиях.

Функциональная схема разрабатываемой системы представлена на рисунке 5.

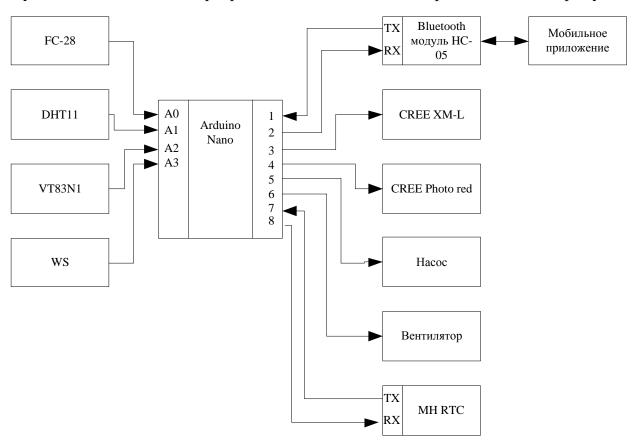


Рисунок 5 – Функциональная схема разрабатываемой системы

2.2 Выбор языков программирования

2.2.1 Система

Для реализации системы была выбрана Платформа ArduinoUno, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0), имеет небольшие размеры и низкую стоимость. Arduino Nano разработана и продается компанией Gravitech. Программирование микроконтроллеров Arduino осуществляется на языке программирования C++ [4].

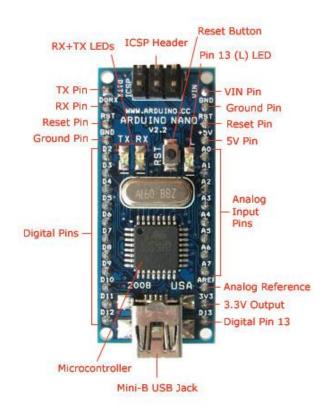


Рисунок 6 – Arduino Nano

Основные критерии выбора:

- Простота в использовании;
- Низкая энергозатратность;
- Низкая цена;
- Расширяемость и работа с большим количеством устройств и датчиков.

2.2.2 Приложение под Android

Для написания приложения под Android была выбрана среда визуальной разработки приложений App Inventor. Среда позволяет написать всю логику приложения и интерфейс пользователя.

Основными критериями выбора языка:

— Содержит весь необходимый функционал;

- Доступность инструментальных средств;
- Удобное средство для GUI;
- Удобная реализации передачи данных через Bluetooth.

2.3 Вывод по разделу

При проектировании разрабатываемой системы была определена архитектура и принцип работы. В результате исследований и анализа были выбраны оптимальные средства для реализации программного продукта, которые бы в полной мере выполняли поставленную задачу.

3 Реализация

3.1 Перечень модулей аппаратной части

В работе рассматриваются только датчики считывающие показатели и Bluetooth модуль, так как выбор насоса, ламп и других возможных приборов сильно зависит от области применения, источника питания и выбора пользователя. Arduino Nano может управлять большинством устройств. Первый вариант подключения, это подключение напрямую к плате. Второй, подача питания к прибору через реле. [5]

Для реализации системы потребуются следующие модули:

- Bluetooth модуль;
- Датчик влажности почвы;
- Датчик температуры;
- Датчик уровня воды;
- Датчик яркости света;
- Часы реального времени;
- Искусственное освещение;
- Вентилятор;
- Hacoc.

3.1.1 Выбор Bluetooth модуля

Главным критерием выбора Bluetooth модуля является цена. Поэтому был выбран самый популярный и простой Bluetooth модуль HC-05. Модуль Bluetooth HC-05 позволяет наладить двунаправленную радиосвязь по протоколу bluetooth при управлении различными объектами. Прибор позволяет связать микроконтроллер с персональным компьютером или мобильным телефоном и осуществлять обмен данными между устройствами [6].

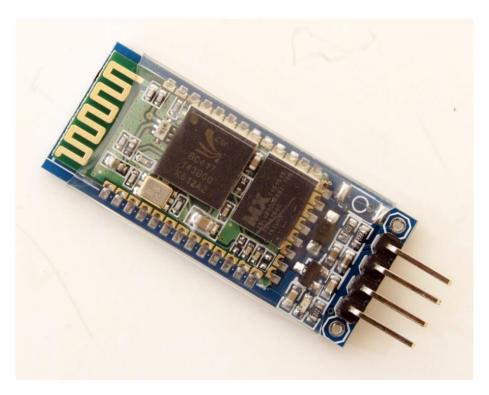


Рисунок 7 – Модуль Bluetooth HC-05

3.1.2 Выбор датчика влажности почвы

Два контакта датчика работают по принципу переменного резистора - чем больше влажность в почвы, тем лучше контакты проводят электричество, падает сопротивление, и уровень сигнала растёт. Аналоговые значения могут отличаться в зависимости от напряжения питания и разрешающей способности пинов микроконтроллера.

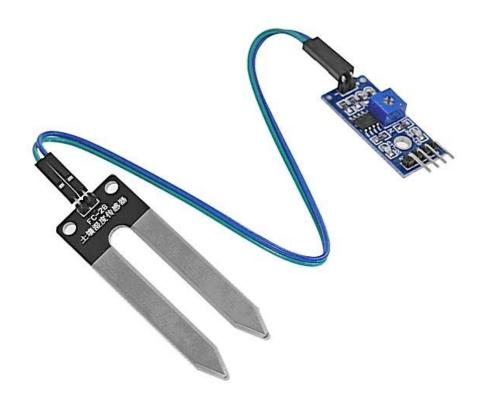


Рисунок 8 - Датчик влажности почвы FC-28

3.1.3 Выбор датчика яркости света

Датчик света — это прибор, который позволяет нашему устройству оценивать уровень освещенности. Для реализации был выбран датчик света VT83N1, имеющий низкую стоимость и достаточную точность.

Рисунок 9 - Датчик света VT83N1

3.1.4 Датчик температуры и влажности

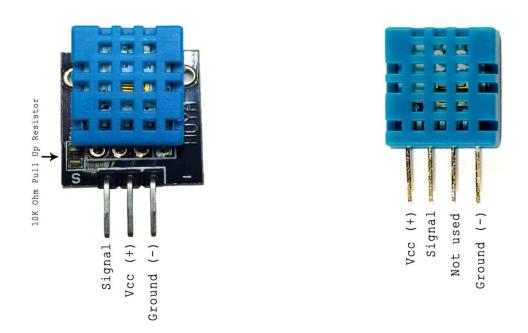


Рисунок 10 – датчик температуры и влажности DHT11

При условии, выращивание растений логично что только при положительных температурах, допускается, что датчик температуры не будет поддерживать отрицательные значения. Был выбран датчик температуры и влажности DHT11. Это недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения цифровой. В температуры окружающего воздуха, данные выдает прост, НО требует определения использовании ОН довольно точного длительности временных сигналов, чтобы декодировать данные.

Параметр	Диапазон измерения	Точность	Разрешение
Влажность	20-90%	±5%	1
Температура	0-50°C	±2°C	1

Рисунок 11 – Диапазон измеряемых параметров

3.1.5 Датчик уровня жидкости

Для того чтобы оповестить пользователя о низком уровне воды необходим датчик уровень жидкости.

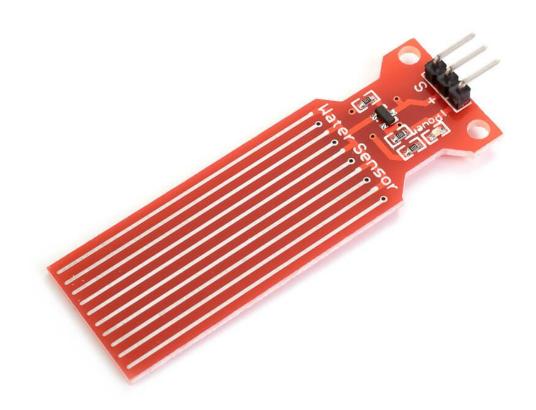


Рисунок 12 – Датчик уровня жидкости

3.1.6 Часы реального времени

Для того, чтобы обеспечить оптимальную длительность светового дня для растений, системе требуется знать текущее время. Для этого необходимы часы реального времени, благодаря которым система сможет в любой момент узнать текущее время. В часах предусмотрено независимое питание, благодаря этому выключение самой системы не обнулит счётчик. В качестве модуля был выбран простой и доступный МН-Real-Time Clock Module DS1302.

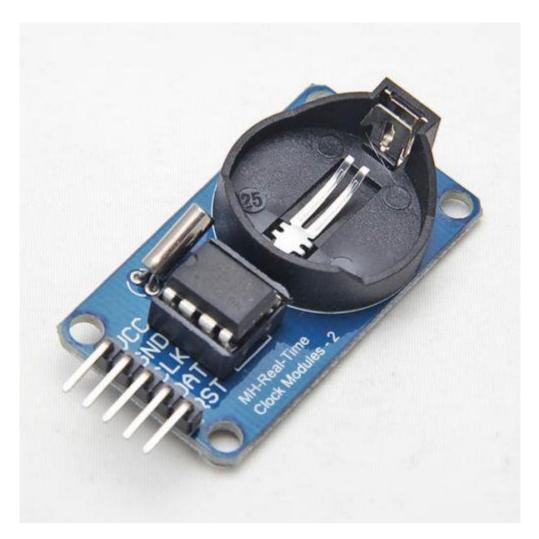


Рисунок 13 – DS1302 Real Time Clock

3.1.7 Освещение

Для того, чтобы обеспечить оптимальные условия для роста растения, при недостатке естественного света, нужно обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений.

В текущий момент в качестве источников света используются следующие источники света:

- лампы накаливания;
- люминесцентные лампы (ЛЛ);

- газоразрядные лампы (ГР);
- индукционные лампы;
- светодиоды;
- натриевые лампы высокого давления (НЛВД);
- металлогалогенные (МГ) лампы.

Источник света должен покрывать весь необходимый спектр на всех фазах растения, иметь низкую энергозатратность, возможность домашнего использования и дешёвую стоимость.

Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами [7].

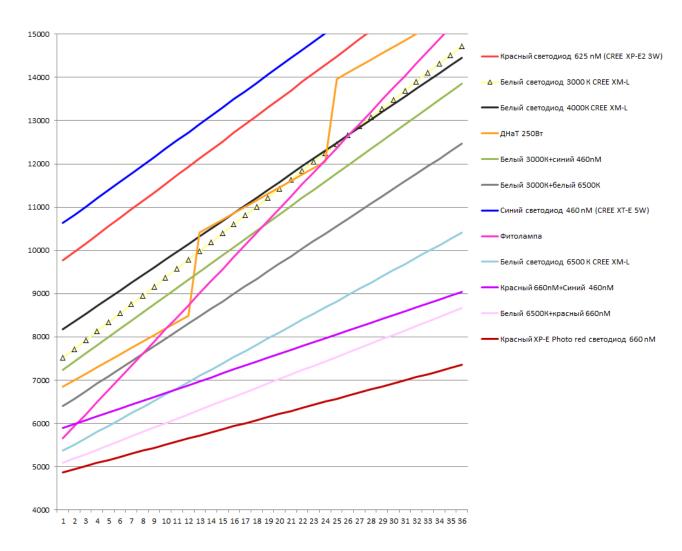


Рисунок 14 – Экономичность светодиодов разных спектров

На рисунке 14 представлен график, на котором горизонтальная ось это количество месяцев, вертикальная – затраты на освещение, начало линий – цена светильника. Цена указана за светильник излучающий 100мкмоль/с. На графике видно, что 3 явных лидера это комбинации красный + синий, белый + красный и красный светодиод. При условии, что светить только красным недостаточно, так как не будет обеспечен весь необходимый спектр. Была выбрана комбинация белый + красный в отношении 2:1.

Стоит отметить, что комбинация синий + красный хоть и имеет меньший наклон чем белый + красный, но дает существенно худший показатель цена/световой поток, поэтому не догоняет сочетание белый + красный даже за 3

года. Плюсом такого выбора так же является возможность отключение белых светодиодов при достаточном освещении солнцем.

При настройке параметров пользователь выбирает длительность светового дня для растения и устанавливает текущее время. Во время светового дня система включает красные светодиоды и если солнце не обеспечивает достаточный уровень освещения, система включает белые светодиоды, спектр которых максимально приближен к солнечному свету.

Подобная конструкция обеспечит оптимальные условия для растений в любую погоду и время года и самое высокий КПД. [8]

Рисунок 15 – Белый светодиод Cree XM-L

Рисунок 16 – Красный светодиод CREE Photo red

3.1.8 Насос и вентилятор

При низкой влажности система должна активировать полив, при высокой температуре включить вентилятор. Система может управлять устройствами с помощью реле, от любого источника питания, а также активировать устройства напрямую. Выбор определённых модулей не был выбран, так как это зависит от масштабов системы и удобного источника питания.

3.2 Программная часть

3.2.1 Программа для Arduino

Программный код для Arduino Nano написан в среде программирования Arduino на языке C++. Основная сложность была в подключении датчиков, так как большинство имеют свои библиотеки и особенности работы. После считывания показателей с датчиков система проверяет их соответствие с допустимым диапазоном, и если они выходят за заданные параметры, оповещает пользователя с помощью светодиодов. Если к системе подключены модули, способные самостоятельно справиться с проблемой, активирует их. Затем система передаёт показатели на телефон. Блок-схема алгоритма работы представлена на рисунке 17. Программный код предоставлен в приложении А.

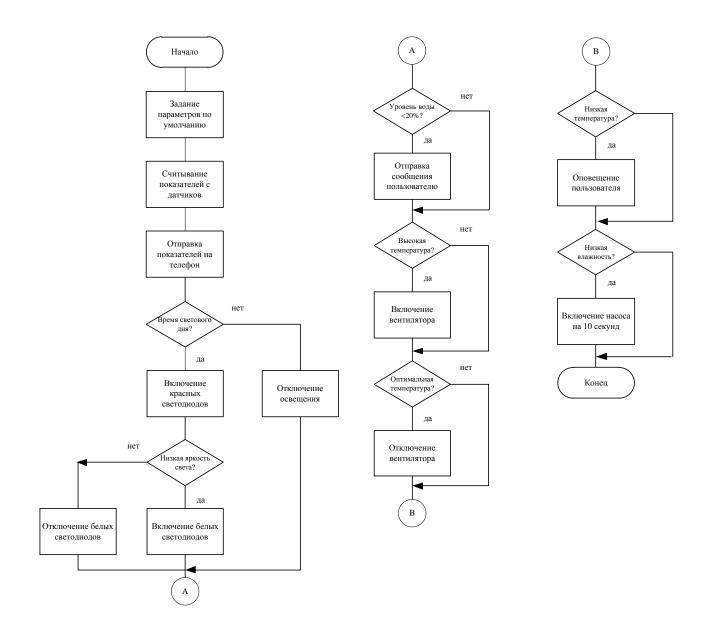


Рисунок 17 – Блок-схема алгоритма работы

3.2.2 Приложение для Android

Программа для телефона написана на визуальном языке программирования AppInvertor. Основная сложность в её реализации была в осуществлении подключения через Bluetooth. Был разработан простой и понятный интерфейс и реализован весь необходимый функционал. Общая

структура программы представлена на рисунке 18. Программный код предоставлен в приложении Б.

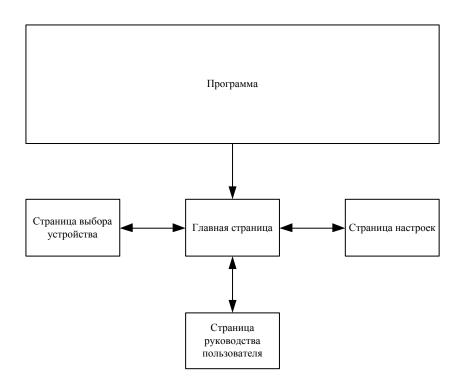


Рисунок 18 – Общая структура программы

3.3 Вывод по разделу

В итоге реализации была разработана простая и эффективная система, которая имеет возможность расширения и модификации. Система сделана максимально экономичной, и при наборе всех необходимых функций, имеет стоимость ниже, чем у аналогов.

4 Описание работы

При входе в приложение, пользователь подключается к необходимому устройству и при необходимости настраивает необходимые параметры. Затем пользователю предоставляется возможность просматривать показатели датчиков.

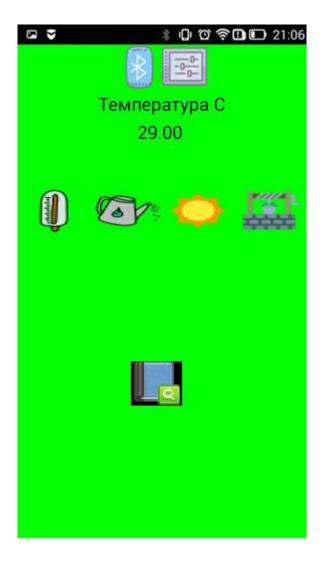


Рисунок 19 – Интерфейс приложения

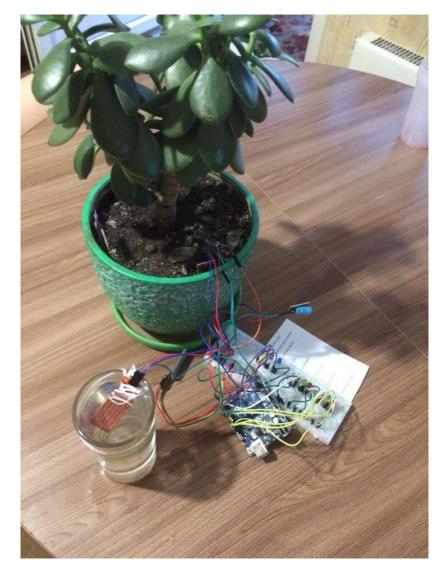


Рисунок 20 – Внешний вид системы

ЗАКЛЮЧЕНИЕ

В ходе выполнения бакалаврской работы была разработана система управления процессом выращивания растений и приложение для неё. Были реализованы все поставленные задачи, а именно: были изучены и проанализированы аналоги современных систем управления процессом выращивания растений, выявлены их недостатки, за счет этого были поставлены требования к разрабатываемому продукту. Была реализована полностью работающая система и приложения под Android.

Планируется продолжение по работе над системой, её модификация и усовершенствование.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Clickandgrow.ru [Электронный ресурс]: Магазин «Click and Grow» Режим доступа: https://clickandgrow.ru/
- 2. Re-store.ru [Электронный ресурс]: Магазин «re:Store» Режим доступа: https://www.re-store.ru/catalog/PF901012/
- 3. Mir-mi.com [Электронный ресурс]: Умный горшок Xiaomi Flora Smart Flower Pot Режим доступа: https://mir-mi.com/catalog/umnye_ustroystva/umnyy_dom/umnyy_gorshok_xiaomi_flora_smart _flower_pot/
- 4. Arduinoplus.ru [Электронный ресурс]: Обзор Arduino Nano Режим доступа: https://arduinoplus.ru/arduino-nano/
- 5. All-arduino.ru [Электронный ресурс]: Программирование Arduino Режим доступа: https://all-arduino.ru/programmirovanie-arduino/
- 6. Cxem.net [Электронный ресурс]: Arduino и Bluetooth Режим доступа: http://cxem.net/arduino/arduino63.php
- 7. Habr.com [Электронный ресурс]: Освещение растений белыми светодиодами Режим доступа: https://habr.com/post/406663/
- 8. Habr.com [Электронный ресурс]: Освещение растений белыми светодиодами о КПД и экономической эффективности Режим доступа: https://habr.com/post/410459/