Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСТИТЕТ»

Хакасский технический институт — филиал ФГАОУ ВО «Сибирский федеральный университет»

институт

«Электроэнергетика»

кафедра

	УТВЕРЖДА	Ю
Заведую	щий кафедр	ой
	Г. Н. Чистян	ОВ
подпись	инициалы, фами	лия
«»	20	Γ.

БАКАЛАВРСКАЯ РАБОТА

13.03.02 «Электроэнергетика и электротехника»

код – наименование направления

Электроснабжение цеха производства погонажных изделий деревообрабатывающей компании «Ресурс – М» г.Красноярск

тема

Руководители	Ь	<u>доцент каф. ЭЭ</u>	А. Н. Туликов
	подпись, дата	должность, ученая степень	инициалы, фамилия
Выпускник			Е. С. Миндибеков
	подпись, дата		инициалы, фамилия
Нормоконтро	элер		И. А. Кычакова
	подпись, дата		инициалы, фамилия

РЕФЕРАТ

Выпускная квалификационная работа по теме «Электроснабжение цеха производства погонажных изделий деревообрабатывающей компании «Ресурс-М» г. Красноярск» содержит 72 страницы текстового документа, 25 использованных источников, 3 листа графического материала, приложений нет.

ЭЛЕКТРИЧЕСКИЕ НАГРУЗКИ, ОСВЕЩЕНИЕ, ВЫБОР ОБОРУДО-ВАНИЯ, ПРОВЕРКА ОБОРУДОВАНИЯ, ТОК КОРОТКОГО ЗАМЫКАНИЯ, ПОТЕРИ НАПРЯЖЕНИЯ.

Объект электроснабжения - цех производства погонажных изделий деревообрабатывающей компании «Ресурс-М» г. Красноярск.

Основной целью разработки схемы электроснабжения является обеспечение электроэнергией надлежащего качества с учетом возможности роста электропотребления. Основная задача — разработать схему электроснабжения таким образом, чтобы она соответствовала современным требованиям безопасности, надежности и экономичности.

В процессе проектирования были рассчитаны электрические нагрузки для каждого уровня электроснабжения, после чего была спроектирована схема электроснабжения цеха производства погонажных изделий деревообрабатывающей компании. Для схемы электроснабжения, выбранной в результате сравнения вариантов, были выбраны удовлетворяющие всем техническим требованиям сечения кабелей и аппараты защиты. Проверка оборудования по токам короткого замывания показала правильность выбора аппаратов защиты. При анализе качества напряжения у характерных электроприемников отклонения напряжения оказались в допустимых пределах. В результате проектирования разработана система электроснабжения, соответствующая всем современным требованиям.

THE ABSTRACT

The final qualification work on the topic "Power supply of the molded products workshop of the Resurs-M woodworking company in Krasnoyarsk" contains 72 pages of a text document, 25 used sources, 3 sheets of graphic material, no applications.

ELECTRICAL LOADS, LIGHTING, SELECTING EQUIPMENT, IN-SPECTION OF EQUIPMENT, SHORT CIRCUIT CURRENT, VOLTAGE LOSS-ES.

The object of power supply is the shop for the production of molded products of the wood processing company Resurs-M in Krasnoyarsk.

The main purpose of the development of the electricity supply scheme is to provide the electricity of the proper quality, taking into account the possibility of increasing power consumption. The main task is to develop a power supply scheme in such a way that it meets the modern requirements of safety, reliability and economy.

In the design process, electrical loads were calculated for each power supply level, after which a circuit was designed for the electrical supply of the woodworking workshop of the woodworking company. For the power supply scheme chosen as a result of comparing the variants, cable sections and protection devices that meet all technical requirements have been selected. Checking the equipment for short-circuit currents showed the correct choice of protection devices. When analyzing the voltage quality of characteristic electrical receivers, the voltage deviations were within acceptable limits. As a result of the design, a power supply system has been developed that meets all modern requirements.

СОДЕРЖАНИЕ

Введение
1 Теоретическая часть
1.1 Xарактеристика объекта 5
1.2 Обзор методов расчета электрических нагрузок 7
2 Аналитическая часть
2.1 Анализ существующего состояния в области проектирования
систем электроснабжения промышленных предприятий11
2.2 Обоснование выбора технологии проектирования
электроснабжения
3 Практическая часть
3.1 Расчет электрических нагрузок
3.2 Светотехнический расчет электрического освещения
3.2.1 Расчет рабочего освещения
3.2.2 Расчет аварийного освещения
3.2.3 Мощность осветительной нагрузки цеха
3.3 Технико-экономическое сравнение вариантов силовой сети 33
3.3.1 Выбор коммутационно-защитных аппаратов
3.3.2 Выбор распределительных пунктов
3.3.3 Выбор сечений кабельных линий
3.3.4 Расчет потерь активной и реактивной мощности и напряжения 40
3.3.5 Технико-экономическое сравнение вариантов
3.4 Электротехнический расчет электрического освещения
3.5 Электротехнический расчет для рабочего освещения
3.6 Электротехнический расчет для аварийного освещения 52
3.7 Расчет токов короткого замыкания и проверка основного
оборудования сети
3.8 Анализ качества напряжения цеховой сети и расчет отклонения
напряжения для характерных электроприемников
Заключение
Список использованных источников71

ВВЕДЕНИЕ

Совершенствование систем электроснабжения должно увязываться с совершенствованием технологии работ и новыми требованиями к электроснабжению. В связи с этим важное место в системе подготовки бакалавров занимают вопросы, связанные с передачей, преобразованием и распределением электроэнергии между электроприёмниками промышленных предприятий. Энергетическая программа России предусматривает дальнейшее развитие энергосберегающей политики. Это диктует необходимость совершенствования промышленной электроэнергетики: создание экономичных и надежных систем электроснабжения, автоматизированного электропривода и систем управления.

Развитие и усложнение структуры систем электроснабжения, возрастающие требования к экономичности и надежности их работы в сочетании с изменяющейся структурой и характером потребителей электроэнергии, широкое внедрение устройств управления распределением и потреблением электроэнергии на базе современной вычислительной техники ставят проблему подготовки высококвалифицированных инженеров.

Важнейшим этапом в развитии творческой деятельности будущих бакалавров является выполнение выпускной квалификационной, в ходе которого развиваются навыки самостоятельного решения инженерных задач и практического применения теоретических знаний. В области электроснабжения потребителей эти задачи предусматривают повышение уровня проектноконструкторских разработок, внедрение и рациональную эксплуатацию высоконадежного электрооборудования, снижение непроизводственных расходов электроэнергии при ее передаче, распределении и потреблении.

При проектировании систем электроснабжения существенно проявляется взаимное влияние многих факторов, таких как качество электроэнергии, выбор и внедрение новых силовых трансформаторов и другого современного оборудования, экономичная и правильная компенсация реактивной мощности, внедрение автоматизации учета расхода электроэнергии и других воздействий, рассматриваемых с единых позиций, что заостряет внимание проектировщиков на многообразии технических решений, из которых целесообразные могут быть получены только в процессе творческой работы.

Цель данной бакалаврской работы — спроектировать систему электроснабжения цеха производства погонажных изделий деревообрабатывающей компании «Ресурс-М» г. Красноярск. Данная система электроснабжения должна соответствовать самым современным требованиям к системам, таким как надежность, экономичность, безопасность для человека и окружающей среды.

1 Теоретическая часть

1.1 Характеристика объекта

Компания «Ресурс-М» обладает собственной производственной базой, деревообрабатывающим комбинатом и занимается производством погонажных изделий с 2010 года.

Производство погонажных изделий — отдельный сегмент строительного рынка. Без них не обойтись ни при возведении зданий, ни при ремонте объектов различного назначения.

Прочные строительные материалы, простые в монтаже, имеющие долгий срок службы, при этом сохраняющие свои эксплуатационные свойства.

Компания производит:

- доску террасную и для пола;
- евровагонку и имитацию бруса;
- блок-хауз, уголок и многое другое.

Компания оказывает полный комплекс услуг по изготовлению деревянных дверей, предметов мебели, лестниц, окон и очень большой выбор садовой мебели всё это выполняется по индивидуальным заказам любой сложности.

Весь сухой пиломатериал, производимый компанией «Ресурс-М», проходит сушку в современных термодинамических камерах, обеспечивающих быструю, равномерную просушку с минимальным короблением.

Компания «Ресурс-М» предлагает широкий ассортимент принадлежностей для комплектации и строительства бань и саун.

Компания производит:

Двери для бани и сауны. Предметы интерьера для бань и саун (картины, различные надписи, гравировки на вагонке и пр.) Лавки, стулья, столы, абажуры. Производит товары, двери и мебель для парилок.

Также компания предоставляет услуги:

Распиловка круглого леса.

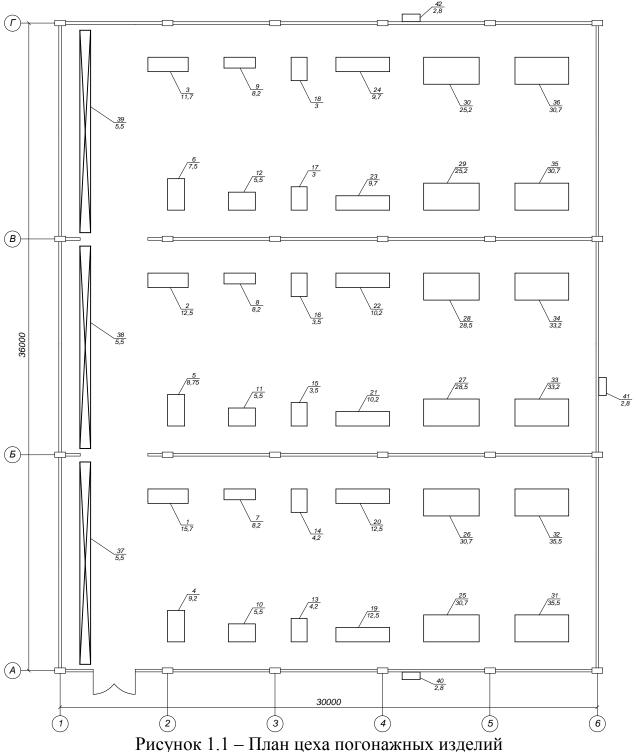
Сушка пиломатериала.

Острожка пиломатериала.

Габаритные размеры цеха погонажных изделий: $A \times B \times H = 36 \times 30 \times 10$ м.

Суммарная мощность цеха производства погонажных изделий составляет 585,15 кВт.

Потребители ЭЭ относятся ко II категории надежности электроснабжения. Количество рабочих смен -2. Всего в помещении рассматриваемого цеха установлено 42 электроприёмника.


Питание предприятия может быть осуществлено от ближайшей подстанции. На подстанции установлены два трансформатора, напряжением 37/10 кВ. Расстояние от подстанции до предприятия составляет 1,5 км. Цех питается от ТП с двумя трансформаторами типа ТМ-100/10.

Перечень оборудования цеха производства погонажных изделий дан в таблице 1.1. Все электроприемники относятся к двигателям силовых общепромышленных установок и производственных механизмов. Они рассчитаны на трёхфазный переменный ток, напряжение питания 380 В и частоту питающей сети 50 Гц. Мощность электропотребления паспортная ($P_{\text{пасп}}$) указана для одного электроприемника. Параметры $\cos \varphi$, $K_{\text{и}}$ определены в соответствии с [2]. Расположение основного оборудования показано в п.6 (при составлении вариантов электроснабжения цеха производства погонажных изделий).

Генеральный план цеха производства погонажных изделий показан с расстановкой электроприемников показан на рисунке 1.1.

Таблица 1.1 – Электрические нагрузки цеха

No	Него соморожного от соморожного могит	Рпасп,			
ЭП	Наименование электроприемника	кВт	ПВ, %	Ки	cosφ
1	Фуговальный станок	15,7	100	0,14	0,6
2	Фуговальный станок	12,5	100	0,14	0,6
3	Фуговальный станок	11,7	100	0,14	0,6
4	Рейсмусовый станок	9,2	100	0,14	0,6
5	Рейсмусовый станок	8,75	100	0,14	0,6
6	Рейсмусовый станок	7,5	100	0,14	0,6
7	Пила циркулярная	8,2	100	0,14	0,6
8	Пила циркулярная	8,2	100	0,14	0,6
9	Пила циркулярная	8,2	100	0,14	0,6
10	Пила торцовочная	5,5	100	0,14	0,6
11	Пила торцовочная	5,5	100	0,14	0,6
12	Пила торцовочная	5,5	100	0,14	0,6
13	Станок шипорезный	4,2	100	0,14	0,6
14	Станок шипорезный	4,2	100	0,14	0,6
15	Станок шипорезный	3,5	100	0,14	0,6
16	Станок шипорезный	3,5	100	0,14	0,6
17	Станок шипорезный	3	100	0,14	0,6
18	Станок шипорезный	3	100	0,14	0,6
19	Пресс для склейки заготовок	12,5	100	0,14	0,6
20	Пресс для склейки заготовок	12,5	100	0,14	0,6
21	Пресс для склейки заготовок	10,2	100	0,14	0,6
22	Пресс для склейки заготовок	10,2	100	0,14	0,6
23	Пресс для склейки заготовок	9,7	100	0,14	0,6
24	Пресс для склейки заготовок	9,7	100	0,14	0,6
25	Станок фрезерный 4-х сторонний	30,7	100	0,14	0,6
26	Станок фрезерный 4-х сторонний	30,7	100	0,14	0,6
27	Станок фрезерный 4-х сторонний	28,5	100	0,14	0,6
28	Станок фрезерный 4-х сторонний	28,5	100	0,14	0,6
29	Станок фрезерный 4-х сторонний	25,2	100	0,14	0,6
30	Станок фрезерный 4-х сторонний	25,2	100	0,14	0,6
31	Станок фрезерный 4-х сторонний 8-ми шпиндельный	35,5	100	0,14	0,6
32	Станок фрезерный 4-х сторонний 8-ми шпиндельный	35,5	100	0,14	0,6
33	Станок фрезерный 4-х сторонний 8-ми шпиндельный	33,2	100	0,14	0,6
34	Станок фрезерный 4-х сторонний 8-ми шпиндельный	33,2	100	0,14	0,6
35	Станок фрезерный 4-х сторонний 8-ми шпиндельный	30,7	100	0,14	0,6
36	Станок фрезерный 4-х сторонний 8-ми шпиндельный	30,7	100	0,14	0,6
37	Таль электрическая	5,5	40	0,1	0,5
38	Таль электрическая	5,5	40	0,1	0,5
39	Таль электрическая	5,5	40	0,1	0,5
40	Вентиляционная установка	2,8	100	0,6	0,8
41	Вентиляционная установка	2,8	100	0,6	0,8
42	Вентиляционная установка	2,8	100	0,6	0,8
	Итого	585,15			

1.2 Обзор методов расчета электрических нагрузок

Целью расчета электрических нагрузок является определение токов, протекающих по токоведущим элементам с точки зрения их допустимости по условиям нагрева элементов. Расчет электрических нагрузок является определяющим на величину затрат в СЭС промышленных предприятий.

В условиях эксплуатации средняя нагрузка рассматривается за определенный интервал времени, к примеру, за время цикла по показаниям счетчиков активной и реактивной электроэнергии. Важное значение имеет нагрузка за наиболее загруженную смену.

Расчетная нагрузка по допустимому нагреву - это такая длительная, неизменная по времени нагрузка элемента СЭС (трансформатора, линии и т.п.), которая эквивалентна ожидаемой изменяющейся нагрузке по наиболее тяжелому тепловому воздействию: максимальной температуре нагрева проводников или тепловому износу изоляции.

Для практических расчетов берется интервал времени 30 мин при максимальной загрузке и в качестве расчетной величины принимается $P_p \approx P_{30}$,

Электрические нагрузки рассчитывают:

- методом упорядоченных диаграмм,
- по удельному расходу электроэнергии,
- методом коэффициента спроса,
- по удельной нагрузке.

Метод упорядоченных диаграмм (современное название метод расчетных коэффициентов). Расчет электрических нагрузок по этому методу и в соответствии с РТМ 36.18.32.4 — 92. Подробнее его опишем при обосновании выбора технологии проектирования электроснабжения.

Метод удельного потребления энергии на единицу продукции. Расчет по этому методу применяется для ЭП с неизменной или мало изменяющейся во времени нагрузкой (к примеру, вентиляторы, насосы и др.). Расчетная нагрузка совпадает со средней за наиболее загруженную смену и должна быть определена по удельному расходу электроэнергии на единицу продукции при заданном объёме выпуска продукции за определенный период времени.

Годовое потребление электроэнергии предприятием в целом или отдельными цехами определяется по формуле

$$W_{\text{год}} = W_{\text{уд}} \cdot M_{\text{год}} \tag{1.1}$$

где $W_{y_{J\!\!A}}$ – удельное потребление энергии на единицу продукции, кBт/ед.;

 $M_{\text{год}}$ - план предприятия по выпуску продукции, ед.

Максимальная расчетная мощность определяется по формуле

$$P_{\text{макс.год.}} = W_{\text{год}} / T_{\text{макс}},$$
 (1.2)

где $T_{\text{макс}}$ - годовое число часов использования максимума активной мощности.

Метод коэффициента спроса. Для определения расчетных нагрузок по этому методу крайне важно знать установленную мощность $P_{\text{ном}}$ группы приемников и коэффициенты мощности соз ϕ и спроса K_c данной группы, определяемые по справочным материалам.

Расчетную нагрузку группы однородных по режиму работы приемников

определяют по формулам:

$$P_{p} = K_{c} \cdot P_{HOM}, \tag{1.3}$$

$$Q_{p}=P_{p}\cdot tg \, \varphi, \tag{1.4}$$

$$Q_p = P_p \cdot tg \, \phi,$$
 (1.4)
 $S_p = \sqrt{(P_p^2 + Q_p^2)},$ (1.5)

где tg ф соответствует соѕ ф данной группы приемников.

Расчетную нагрузку узла СЭС, содержащего группы ЭП электроэнергии с различными режимами работы, определяют с учетом разновременности максимумов нагрузки отдельных групп.

$$S_{p} = \sqrt{(\Sigma P_{p}^{2} + \Sigma Q_{p}^{2}) \cdot K_{p,M}}, \tag{1.6}$$

где ΣP_p и ΣQ_p - соответственно сумма расчетных активных и реактивных мощностей отдельных групп ЭП;

К _{р.м} - коэффициент разновременности максимумов нагрузок отдельных групп приемников.

Значение К р.м можно приближенно принять равным 0,9. При этом суммарная расчетная нагрузка узла СЭС не должна быть меньше его средней нагрузки.

Метод удельной нагрузки на единицу производственной площади. Применяется при проектировании универсальных сетей машиностроения, характеризующихся большим числом ЭП малой и средней мощности, равномерно распределенных по площади цеха. Расчетную нагрузку группы приемников определяют по формуле

$$P_{p} = p_{yx} \cdot F, \tag{1.7}$$

где $p_{yд}$ - удельная расчетная мощность на 1 м² производственной площади, $\kappa B T / M^2$;

F - площадь размещения приемников группы, м²

Удельную нагрузку определяют по статистическим данным. Значение ее зависит от рода производства, площади цеха, обслуживаемой магистральным шинопроводом, и изменяется в пределах $0.06 - 0.6 \text{ kBt/ }\text{m}^2$.

Рассматриваемый метод целесообразно применять для определения расчетной нагрузки на стадии проектного задания при технико-экономическом сравнении вариантов, а также при ориентировочных расчетах.

Еще существуют другие методы:

- по средней мощности и отклонению расчетной нагрузки от средней;
- по средней мощности и коэффициенту формы графика нагрузки.

Метод расчета электрических нагрузок по средней мощности и отклонению расчетной нагрузки от средней заключается в следующем. Поскольку групповая нагрузка представляет собой систему независимых случайных нагрузок отдельных электроприемников, то при большом их числе групповая нагрузка подчиняется нормальному закону распределения случайных величин. Данный метод расчета — статистический метод расчета нагрузок.

По этому методу расчетную нагрузку группы приемников определяют двумя интегральными показателями: генеральной средней нагрузкой (P_c) и генеральным среднеквадратичным отклонением.

Применение этого метода целесообразно для определения нагрузок по отдельным группам и узлам СЭС при наличии результатов анализа действующих электроустановок напряжением до 1 кВ.

Расчетные значения полной мощности и тока по данному методу для группы ЭП определяются по известным формулам.

В методе расчета электрических нагрузок по средней мощности и коэффициенту формы графика нагрузки расчетную нагрузку группы ЭП принимают равной их среднеквадратичной. Метод применим для расчета нагрузок группы ЭП, когда число приемников в группе достаточно велико и их режим работы разнообразен.

Данный метод может применяться для определения расчетных нагрузок цеховых шинопроводов, на шинах низшего напряжения цеховых трансформаторных подстанций, на шинах РУ напряжением 6-10 кВ, когда значения коэффициента формы графика (K_{ϕ}) достаточно стабильны.

По данному методу расчетные нагрузки группы электроприемников определяют с учетом коэффициента формы графика, значения коэффициента формы графика достаточно стабильны, если производительность (и, как следствие, нагрузка) завода или цеха примерно постоянна. При проектировании значение коэффициента K_{ϕ} может быть принято по опытным данным аналогичного действующего предприятия.

Все рассмотренные методы определения расчетных нагрузок применяются при расчетах симметричных трехфазных нагрузок.

2 Аналитическая часть

2.1 Анализ существующего состояния в области проектирования систем электроснабжения промышленных предприятий

Система электроснабжения предприятия состоит из питающих, распределительных, трансформаторных и преобразовательных подстанций и связывающих их кабельных и воздушных сетей и токопроводов высокого и низкого напряжения. Система электроснабжения строится таким образом, чтобы она была надежна, удобна и безопасна в обслуживании и обеспечивала необходимое качество энергии и бесперебойность электроснабжения в нормальном и послеаварийном режимах. В то же время система электроснабжения должна быть экономичной по затратам, ежегодным расходам, потерям энергии и расходу дефицитных материалов и оборудования. Экономичность и надежность системы электроснабжения достигается путем применения взаимного резервирования сетей предприятий и объединения питания промышленных, коммунальных и сельских потребителей. При сооружении на предприятиях собственных электростанций, главных понизительных подстанций и других источников питания учитываются близлежащие внезаводские потребители электроэнергии. Особенно это необходимо в районах, недостаточно охваченных энергосистемами.

Электрические сети и подстанции органически входят в общий комплекс предприятия, как и другие производственные сооружения и коммуникации. Поэтому они должны увязываться со строительной и технологической частями, очередностью строительства и общим генеральным планом предприятия.

Требования, предъявляемые к электроснабжению предприятий, зависят также от потребляемой ими мощности.

Наивыгоднейшее для данного предприятия напряжение зависит от многих факторов, основными из которых являются мощность, потребляемая предприятием, его удаленность от источника питания и напряжение, на котором может производиться питание.

Напряжения 10 (6) кВ применяются, в основном, на второй и последующих ступенях распределения энергии на крупных предприятиях и в распределительных сетях небольших и средних предприятий. На первой ступени электроснабжения крупных предприятий напряжения 10 (6) кВ целесообразны при применении токопроводов. Из сравнения напряжений 10 и 6 кВ можно сделать вывод, что для внутризаводских распределительных сетей в качестве основного в большинстве случаев целесообразно напряжение 10 кВ.

В электроустановках до 1000 В применяется напряжение 380/220 В с питанием силовых и осветительных электроприемников от общих трансформаторов, но, как правило, от отдельных сетей.

2.2 Обоснование выбора технологии проектирования электроснабжения

Согласно [9, 13] следует использовать метод расчетных коэффициентов, что применимо для расчета силовых электрических нагрузок рассматриваемого объекта.

Коэффициент расчетной мощности K_p – отношение расчетной активной мощности P_p к значению $K_u P_H$ группы ЭП [9]:

$$K_{p} = P_{p} / K_{u}P_{H} \tag{2.1}$$

Коэффициент расчетной мощности зависит от эффективного числа электроприемников, средневзвешенного коэффициента использования, а также от постоянной времени нагрева сети, для которой рассчитываются электрические нагрузки.

Приняты следующие постоянные времени нагрева [5, 6]:

 $T_o = 10$ мин — для сетей напряжением до 1 кВ, питающих распределительные шинопроводы, пункты, сборки, щиты. Значения K_p для этих сетей принимаются по таблице 1 [9];

 $T_o = 2,5$ ч — для магистральных шинопроводов и цеховых трансформаторов. Значения K_p для этих сетей принимаются по таблице 2 [9];

 $T_o \ge 30$ мин - для кабелей напряжением 6 кВ и выше, питающих цеховые трансформаторные подстанции и распределительные устройства. Расчетная мощность для этих элементов определяется при $K_p = 1$.

Коэффициент одновременности K_o — отношение расчетной мощности на шинах 6 - 10 кВ к сумме расчетных мощностей потребителей, подключенных к шинам 6 - 10 кВ РП, ГПП

$$K_{o} = P_{p\Sigma} / \Sigma P_{p}. \tag{2.2}$$

Расчет электрических нагрузок ЭП напряжением до 1 кВ производится для каждого узла питания (распределительного пункта, распределительного шинопровода, щита станций управления, цеховой трансформаторной подстанции), а также по цеху, корпусу в целом [9].

Исходные данные для расчета (графы 1-6) заполняются на основании полученных от специалистов таблиц-заданий на проектирование электротехнической части и согласно справочным материалам (графы 5, 6), в которых приведены значения коэффициентов использования и реактивной мощности.

В графах 7 и 8 соответственно записываются построчно величины $K_u P_H$ и $K_u P_H tg \phi$. В итоговой строке определяются суммы этих величин $\Sigma K_u P_H \Sigma K_u P_H tg \phi$.

Определяется групповой коэффициент использования для данного узла питания

$$K_{p} = P_{p} / K_{H} P_{H}, \qquad (2.3)$$

Значение К_и заносится в графу 5 итоговой строки.

Для последующего определения n_3 в графе 10 построчно определяются для каждой характерной группы ЭП одинаковой мощности величины $np_{_{\mathit{H}}}^2$ и в итоговой строке — их суммарное значение $\Sigma np_{_{\mathit{H}}}^2$. При определении n_3 по упрощенной формуле графа 7 не заполняется.

Определяется эффективное число электроприемников n_3 следующим образом:

Как правило, n_э для итоговой строки определяется по выражению

$$n_{_{9}} = (\Sigma P_{_{H}})^2 / \Sigma n p_{_{H}}^2 \tag{2.4}$$

Значение п₃ округляется до ближайшего меньшего целого числа.

В зависимости от средневзвешенного коэффициента использования и эффективного числа электроприемников определяется и заносится в графу 11 коэффициент расчетной нагрузки K_p .

Расчетная активная мощность подключенных к узлу питания ЭП напряжением до 1 кВ (графа 12) определяется по выражению

$$P_{p} = K_{p} \Sigma K_{H} P_{H} \tag{2.5}$$

В случаях, когда расчетная мощность P_p окажется меньше номинальной наиболее мощного электроприемника, следует принимать $P_p = p_{\text{н.макс}}$.

Расчетная реактивная мощность (графа 13) определяется следующим образом:

Для питающих сетей напряжением до 1 кВ в зависимости от n₃:

при
$$n_9 \le 10$$
 $Q_p = 1,1 \Sigma K_{\text{M}} P_{\text{H}} t g \phi.$ (2.6)

при
$$n_9 > 10$$
 $Q_p = \Sigma K_{\scriptscriptstyle H} P_{\scriptscriptstyle H} t g \phi.$ (2.7)

Для магистральных шинопроводов и на шинах цеховых трансформаторных подстанций, а также при определении реактивной мощности в целом по цеху, корпусу, предприятию

$$Q_{p} = K_{p} \Sigma K_{u} P_{H} tg \phi = P_{p} tg \phi, \qquad (2.8)$$

К расчетной активной и реактивной мощности силовых ЭП напряжением до 1 кВ должны быть при необходимости добавлены осветительные нагрузки $P_{\text{p.o}}$ и $Q_{\text{p.o}}$.

Значение токовой расчетной нагрузки, по которой выбирается сечение

линии по допустимому нагреву, определяется по выражению

$$I_p = S_p / \sqrt{3}U_\mu \text{ (rpaфa 15)},$$
 (2.9)

где $S_p = \sqrt{P_p^2 + Q_p^2}$ – полная расчетная мощность, кВ·А, (графа 14).

Для расчета освещения будет применен достаточно точный и широко распространенный метод коэффициента использования светового потока.

Правильное выполнение осветительных установок способствует рациональному использованию электроэнергии, улучшению качества выпускаемой продукции, повышению производительности труда, уменьшению количества аварий и случаев травматизма, снижению утомляемости рабочих.

При проектировании осветительных установок большое значение имеет правильное определение требуемой освещённости объекта. Для этой цели разработаны нормы промышленного освещения. Освещение по своему назначению и использованию делится на рабочее, аварийное и эвакуационное.

Размещение светильников определяется следующими размерами:

h_C – расстояние светильника от перекрытия,

 $h_{\Pi} = H - h_{C} - высота светильника над полом,$

h_P – высота расчетной поверхности над полом,

 $h = h_{\Pi} - h_{P} -$ расчетная высота,

L – расстояние между соседними светильниками или рядами ламп,

l — расстояние от крайних светильников или рядов светильников до стены.

Основное требование при выборе расположения светильников заключается в доступности при их обслуживании. Кроме того, размещение светильников определяется условие экономичности. Важное значение имеет отношение расстояния между светильниками или рядами светильников к расчетной высоте

$$\lambda = L / h$$
.

уменьшение его приводит к удорожанию осветительной установки и усложнению ее обслуживания, а чрезмерное увеличение приводит к резкой неравномерности освещения и к возрастанию расходов энергии.

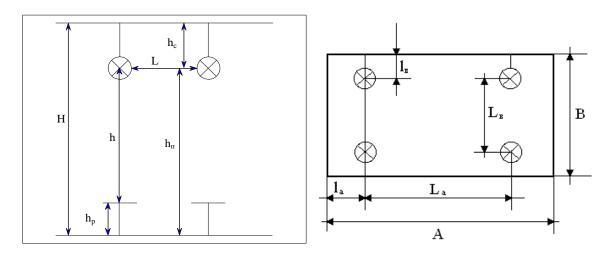


Рисунок 2.1 – Параметры для расчета освещения

В соответствии с СП 52.13330.2011 (актуализированная редакция СНиП 23-05-95*) для рабочего освещения применим лампы типа ДРЛ (п. 7.2-7.3 указанного СП), для аварийного (эвакуационного) — светодиодные лампы (п. 7.112 указанного СП).

Задачей расчета осветительной установки является определение числа и мощности источника света или определение фактической освещенности, создаваемой спроектированной установкой.

Расчет освещения выполняется методом коэффициента использования светового потока, предназначенным для расчета равномерного освещения горизонтальных поверхностей при отсутствии крупных затеняющих предметов. При расчете по этому методу световой поток ламп в каждом светильнике, необходимый для создания заданной минимальной освещенности, определяется по формуле [12, с. 261]:

$$\Phi_{p} = \frac{E_{H} \cdot K_{3A\Pi} \cdot F \cdot z}{N \cdot n}, \qquad (2.10)$$

где $E_{\rm H}$ – норма освещенности;

 $K_{3A\Pi} = 1,5 - коэффициент запаса [10, таблица 4.4],$

F – площадь освещаемой поверхности, м²,

 $z = E_{CP}/E_H - коэффициент минимальной освещенности (для люминесцентных ламп – <math>z = 1,1$),

N – число светильников,

 η — коэффициент использования светового потока источника света, доли единиц.

По значению Φ выбирается стандартная лампа так, чтобы ее поток отличался от расчетного значения на -10% ... +20%.

Индекс помещения определяется по [10] при условии, что $L/B \le 3,5$. Принимаем $\rho_{\Pi} = 70\%$; $\rho_{CT} = 50\%$; $\rho_{P} = 10\%$ [10, таблица 5.1, с. 126]

 ρ_{Π} , ρ_{CT} , ρ_{P} — коэффициенты отражения поверхностей (потолка, стен, рабочей поверхности) необходимы для выбора η .

Коэффициент использования светового потока является функцией индекса помещения:

$$i = \frac{L \cdot B}{h \cdot (L + B)}. \tag{2.11}$$

Коэффициент использования светового потока η определяется по [10, таблица 5.9, с.134].

Норма освещенности принимается по таблице 1 (СП 52.13330.2011) для помещений при системе общего освещения.

По величине Φ_p в [11, таблица 14.17, с. 373] подбираем лампу.

Отклонение светового потока определяется по формуле:

$$\Delta \Phi = \frac{\Phi_{\text{HOM}} - \Phi_{\text{p}}}{\Phi_{\text{p}}} \cdot 100\%. \tag{2.12}$$

различие между Φ_{HOM} и Φ_{p} должно находиться в пределах -10...+20%.

3 Практическая часть

3.1 Расчет электрических нагрузок

Расчет электрической нагрузки на первом уровне производится для каждого электроприемника в отдельности. По исходным данным определяется номинальная активная мощность приемника электроэнергии.

Для установок, работающих в длительном режиме [5, 6]:

$$P_{\text{hom}} = P_{\text{пасп}}, \text{ так как } \Pi B = 100\%.$$
 (3.1)

Для установок, работающих в повторно-кратковременном режиме [5, 6]:

$$P_{\text{HOM}} = P_{\text{HACH}} \cdot \sqrt{\Pi B}. \tag{3.2}$$

Полная мощность находится из выражения:

$$S_{p} = \sqrt{P_{p}^{2} + Q_{p}^{2}}.$$
 (3.3)

Пример. Расчет номинальной мощности, активной и реактивной мощностей первого уровня и полной мощности ЭП №37 (таль электрическая).

В соответствии с [9] расчетная нагрузка 1УР принимается равной номинальной нагрузке. По формулам (3.1) – (3.3) определяем:

$$P_{p1} = P_{HOM} = 5.5 \cdot \sqrt{0.4} = 3.48 \text{ кВт};$$

 $Q_{p1} = 3.48 \cdot \text{tg}(\arccos(0.5)) = 6.02 \text{ кВар};$
 $S_{p1} = \sqrt{3.48^2 + 6.02^2} = 6.95 \text{ кВА}.$

Принимаем кратность пускового тока $K_{\Pi} = 5$ (для нагрузки, представленной асинхронными двигателями с короткозамкнутым ротором 5-7) [12].

$$I_{p1} = \frac{P_{p1} \cdot 10^{3}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot \cos\varphi} = \frac{3,48 \cdot 10^{3}}{\sqrt{3} \cdot 380 \cdot 0,5} = 10,57 \text{ A};$$

$$I_{II} = K_{II} \cdot I_{p1} = 5 \cdot 10,57 = 73,99 \text{ A}.$$

Для остальных электроприемников расчеты аналогичны (таблица 3.1).

Таблица 3.1 – Расчет электрических нагрузок на первом уровне

		Видан	ПВ	1	1	1	D	D .	0.	C	1	I
No	Наименование ЭП	Рпасп, кВт	ПВ, %	Ки	cosφ	tgφ	Р _{ном} , кВт	P _{p1} , кВт	Q _{p1} , кВар	Sp, кВА	Ip, A	Іпуск, А
1	2	3	4	5	6	7	8	9	10	11	1p, A	13
1	Фуговальный станок	15,7	100	0,14	0,6	1,33	15,7	15,7	20,88	26,12	39,76	198,8
2	Фуговальный станок	12,5	100	0,14	0,6	1,33	12,5	12,5	16,63	20,12	31,65	158,25
3	Фуговальный станок	11,7	100	0,14	0,6	1,33	11,7	11,7	15,56	19,47	29,63	148,15
4	Рейсмусовый станок	9,2	100	0,14	0,6	1,33	9,2	9,2	12,24	15,31	23,3	116,5
5	Рейсмусовый станок	8,75	100	0,14	0,6	1,33	8,75	8,75	11,64	14,56	22,16	110,8
6	Рейсмусовый станок	7,5	100	0,14	0,6	1,33	7,5	7,5	9,98	12,48	18,99	94,95
7	Пила циркулярная	8,2	100	0,14	0,6	1,33	8,2	8,2	10,91	13,65	20,76	103,8
8	Пила циркулярная	8,2	100	0,14	0,6	1,33	8,2	8,2	10,91	13,65	20,76	103,8
9	Пила циркулярная	8,2	100	0,14	0,6	1,33	8,2	8,2	10,91	13,65	20,76	103,8
10	Пила торцовочная	5,5	100	0,14	0,6	1,33	5,5	5,5	7,32	9,16	13,93	69,65
11	Пила торцовочная	5,5	100	0,14	0,6	1,33	5,5	5,5	7,32	9,16	13,93	69,65
12	Пила торцовочная	5,5	100	0,14	0,6	1,33	5,5	5,5	7,32	9,16	13,93	69,65
13	Станок шипорезный	4,2	100	0,14	0,6	1,33	4,2	4,2	5,59	6,99	10,64	53,2
14	Станок шипорезный	4,2	100	0,14	0,6	1,33	4,2	4,2	5,59	6,99	10,64	53,2
15	Станок шипорезный	3,5	100	0,14	0,6	1,33	3,5	3,5	4,66	5,83	8,86	44,3
16	Станок шипорезный	3,5	100	0,14	0,6	1,33	3,5	3,5	4,66	5,83	8,86	44,3
17	Станок шипорезный	3	100	0,14	0,6	1,33	3	3	3,99	4,99	7,6	38
18	Станок шипорезный	3	100	0,14	0,6	1,33	3	3	3,99	4,99	7,6	38
19	Пресс для склейки заготовок	12,5	100	0,14	0,6	1,33	12,5	12,5	16,63	20,8	31,65	158,25
20	Пресс для склейки заготовок	12,5	100	0,14	0,6	1,33	12,5	12,5	16,63	20,8	31,65	158,25
21	Пресс для склейки заготовок	10,2	100	0,14	0,6	1,33	10,2	10,2	13,57	16,98	25,83	129,15
22	Пресс для склейки заготовок	10,2	100	0,14	0,6	1,33	10,2	10,2	13,57	16,98	25,83	129,15
23	Пресс для склейки заготовок	9,7	100	0,14	0,6	1,33	9,7	9,7	12,9	16,14	24,56	122,8
24	Пресс для склейки заготовок	9,7	100	0,14	0,6	1,33	9,7	9,7	12,9	16,14	24,56	122,8
25	Станок фрезерный 4-х сторон-	30,7	100	0,14	0,6	1,33						
23	ний	30,7					30,7	30,7	40,83	51,08	77,74	388,7
26	Станок фрезерный 4-х сторон-	30,7	100	0,14	0,6	1,33						
	ний		100	0.4.4	0.1	1.00	30,7	30,7	40,83	51,08	77,74	388,7
27	Станок фрезерный 4-х сторон-	28,5	100	0,14	0,6	1,33	20.5	20.5	27.01	47.42	70.17	260.05
	Ний	, i	100	0.14	0.6	1 22	28,5	28,5	37,91	47,43	72,17	360,85
28	Станок фрезерный 4-х сторон-	28,5	100	0,14	0,6	1,33	28,5	28,5	27.01	17.12	72 17	260.95
	ний Станок фрезерный 4-х сторон-		100	0,14	0,6	1,33	26,3	20,3	37,91	47,43	72,17	360,85
29	ний	25,2	100	0,14	0,0	1,33	25,2	25,2	33,52	41,94	63,81	319,05
	Станок фрезерный 4-х сторон-		100	0,14	0,6	1,33	23,2	23,2	33,32	41,74	03,61	317,03
30	ний	25,2	100	0,14	0,0	1,33	25,2	25,2	33,52	41,94	63,81	319,05
	Станок фрезерный 4-х сторон-		100	0,14	0,6	1,33	23,2	23,2	33,32	71,27	03,01	317,03
31	ний 8-ми шпиндельный	35,5	100	0,11	0,0	1,33	35,5	35,5	47,22	59,08	89,89	449,45
	Станок фрезерный 4-х сторон-	25.5	100	0,14	0,6	1,33	,-	,-	,	,00	,	,
32	ний 8-ми шпиндельный	35,5		-,	- ,~	,	35,5	35,5	47,22	59,08	89,89	449,45
22	Станок фрезерный 4-х сторон-	22.2	100	0,14	0,6	1,33	ĺ		Ź		Ĺ	,
33	ний 8-ми шпиндельный	33,2					33,2	33,2	44,16	55,25	84,07	420,35
34	Станок фрезерный 4-х сторон-	33,2	100	0,14	0,6	1,33						
34	ний 8-ми шпиндельный	33,2					33,2	33,2	44,16	55,25	84,07	420,35
35	Станок фрезерный 4-х сторон-	30,7	100	0,14	0,6	1,33						
33	ний 8-ми шпиндельный	50,7					30,7	30,7	40,83	51,08	77,74	544,18
36	Станок фрезерный 4-х сторон-	30,7	100	0,14	0,6	1,33						
	ний 8-ми шпиндельный						30,7	30,7	40,83	51,08	77,74	544,18
37	Таль электрическая	5,5	40	0,1	0,5	1,73	3,48	3,48	6,02	6,95	10,57	73,99
38	Таль электрическая	5,5	40	0,1	0,5	1,73	3,48	3,48	6,02	6,95	10,57	73,99
39	Таль электрическая	5,5	40	0,1	0,5	1,73	3,48	3,48	6,02	6,95	10,57	73,99
40	Вентиляционная установка	2,8	100	0,6	0,8	0,75	2,8	2,8	2,1	3,5	5,32	37,24
41	Вентиляционная установка	2,8	100	0,6	0,8	0,75	2,8	2,8	2,1	3,5	5,32	37,24
42	Вентиляционная установка	2,8	100	0,6	0,8	0,75	2,8	2,8	2,1	3,5	5,32	37,24

Произведем расчет силовых электрических нагрузок для цеха производства погонажных изделий в целом. Расчеты производим в соответствии с ме-

тодом расчетных коэффициентов, описанным в п.1.2. Результат расчета представлен в таблице 3.2.

Для получения наиболее экономически выгодной проектируемой схемы электроснабжения, дальнейший расчет произведем по двум вариантам:

Вариант №1 – Распределение электроэнергии по цеху с помощью распределительных силовых пунктов (рисунок 3.1).

Вариант №2 – Распределение электроэнергии по цеху с помощью распределительных шинопроводов (рисунок 3.2).

Результаты расчета по каждому варианту представлены в таблицах 3.3-3.4.

Таблица 3.2 – Расчет силовых электрических нагрузок в целом по цеху

		Исх	одные дан	ные							1	z				
	по заданию те	жнолого Ц.	Номин (установ	альная вленная) сть, кВт	по спр	авочным д	анным	Pac	четные вел	пичины	спо Э.П., п	этной нагрузки	Расч	етная мощі	ность	ок Ір, А
	Наименование ЭП	Количество Э	нd IIE олонпО	Общая Р _и =пр _и	Коэффициент использования, Ки	cosφ	tgφ	К"Р", кВт	К"Р" tgф, кВар	"-du	Эффективное число Э.П., п _э	Коэффициент расчетной Кр	Рр, кВт	Ор, кВар	Sp, кВА	Расчетный ток Ip, A
	1	2	3	4	5	(5	7	8	9	10	11	12	13	14	15
1	Фуговальный станок	1	15,7	15,7	0,14	0,6	1,33	2,2	2,93	246,49						
2	Фуговальный станок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
3	Фуговальный станок	1	11,7	11,7	0,14	0,6	1,33	1,64	2,18	136,89						
4	Рейсмусовый станок	1	9,2	9,2	0,14	0,6	1,33	1,29	1,72	84,64						
5	Рейсмусовый станок	1	8,75	8,75	0,14	0,6	1,33	1,23	1,64	76,5625						
6	Рейсмусовый станок	1	7,5	7,5	0,14	0,6	1,33	1,05	1,4	56,25						
7	Пила циркулярная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
8	Пила циркулярная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
9	Пила циркулярная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
0	Пила торцовочная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
1	Пила торцовочная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
1 2	Пила торцовочная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
1 3	Станок шипорезный	1	4,2	4,2	0,14	0,6	1,33	0,59	0,78	17,64						
1 4	Станок шипорезный	1	4,2	4,2	0,14	0,6	1,33	0,59	0,78	17,64						
1 5	Станок шипорезный	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						
1 6	Станок шипорезный	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						
7	Станок шипорезный	1	3	3	0,14	0,6	1,33	0,42	0,56	9						
8	Станок шипорезный	1	3	3	0,14	0,6	1,33	0,42	0,56	9						
9	Пресс для склейки заготовок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
2 0	Пресс для склейки заготовок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
2	Пресс для склейки заготовок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
2 2 2	Пресс для склейки заготовок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
3	Пресс для склейки заготовок	1	9,7	9,7	0,14	0,6	1,33	1,36	1,81	94,09						
4	Пресс для склейки заготовок	1	9,7	9,7	0,14	0,6	1,33	1,36	1,81	94,09						
5	Станок фрезерный 4-х сторонний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
2 6	Станок фрезерный 4-х сторонний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						

Окончание таблицы 3.2

	1	2	3	4	5		6	7	8	9	10	11	12	13	14	15
27	Станок фрезерный 4-х сторонний	1	28,5	28,5	0,14	0,6	1,33	3,99	5,31	812,25						
28	Станок фрезерный 4-х сторонний	1	28,5	28,5	0,14	0,6	1,33	3,99	5,31	812,25						
29	Станок фрезерный 4-х сторонний	1	25,2	25,2	0,14	0,6	1,33	3,53	4,69	635,04						
30	Станок фрезерный 4-х сторонний	1	25,2	25,2	0,14	0,6	1,33	3,53	4,69	635,04						
31	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	35,5	35,5	0,14	0,6	1,33	4,97	6,61	1260,25						
32	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	35,5	35,5	0,14	0,6	1,33	4,97	6,61	1260,25						
33	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	33,2	33,2	0,14	0,6	1,33	4,65	6,18	1102,24						
34	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	33,2	33,2	0,14	0,6	1,33	4,65	6,18	1102,24						
35	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
36	Станок фрезерный 4-х сторонний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
37	Таль электрическая	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
38	Таль электрическая	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
39	Таль электрическая	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
40	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
41	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
42	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
	ИТОГО СИЛОВАЯ НАГРУЗКА	42		585,15	0,15	0,61	1,3	85,17	111	13339,88 3	26	0,75	63,88	83,04	104,77	159,18

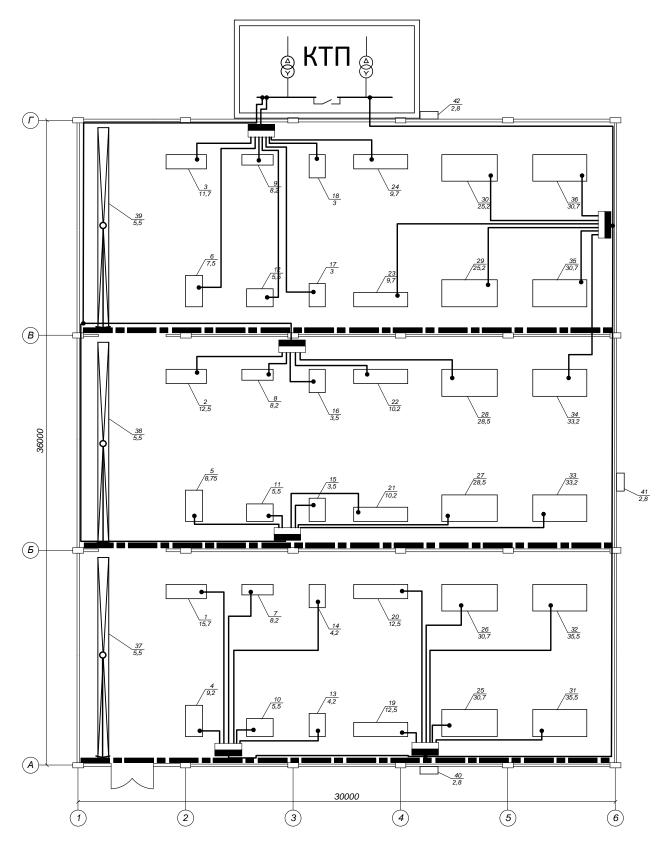


Рисунок 3.1 – Первый вариант схемы электроснабжения цеха

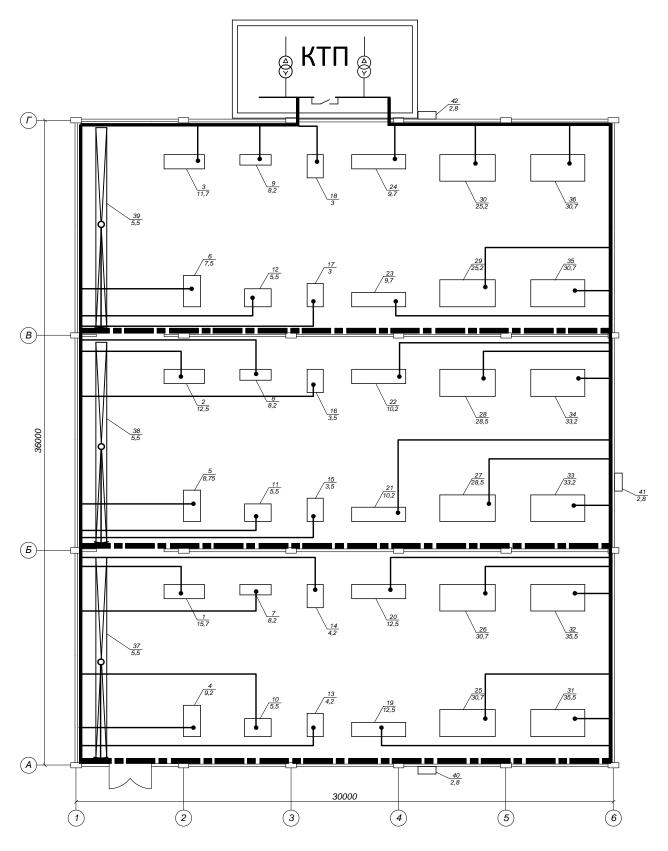


Рисунок 3.2 – Второй вариант схемы электроснабжения цеха

Таблица 3.3 – Расчет второго уровня электроснабжения (вариант 1)

									1							
	по задан		Исходные данн									Kp				
	по задан	ию техн	Номинальная новленная) мо кВт		по спра	івочным д	анным	Pac	четные ве.	личины	Э.П., п,	нагрузки	Расч	етная мощ	ность	p, A
На	именование ЭП	Количество Э.П.	Одного ЭП ра	Общая Р. = пр.	Коэффициент использования, Ки	cosφ	tgφ	К"Р", кВт	К"Р" tgq, кВар	np ² ,n	Эффективное число Э.П., п _ъ	Коэффициент расчетной нагрузки	Рр, кВт	Ор, кВар	Sp, ĸBA	Расчетный ток Ip, A
	1	2	3	4	5	(5	7	8	9	10	11	12	13	14	15
	СП-1															
1	Фуговальный станок	1	15,7	15,7	0,14	0,6	1,33	2,2	2,93	246,49						
7	Пила циркуляр- ная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
14	Станок шипо- резный	1	4,2	4,2	0,14	0,6	1,33	0,59	0,78	17,64						
4	Рейсмусовый станок	1	9,2	9,2	0,14	0,6	1,33	1,29	1,72	84,64		Ì				İ
10	Пила торцовоч- ная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
	Станок шипо-						1,33	0,59	0,78	17,64						
13	резный Таль электриче-	1	4,2	4,2	0,14	0,6	1,73	0,55	0,95	30,25						
37	ская	1	5,5	5,5	0,1	0,5		7,14	9,71	494,15		1,96	13,99	10,68	17,6	
	итого	7		52,5	0,14	0,59	1,36	7,14	9,71	494,13	6	1,90	13,99	10,08	17,0	26,74
	СП-2 Пресс для															
20	склейки загото- вок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
26	Станок фрезер- ный 4-х сторон- ний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
	Станок фрезер- ный 4-х сторон- ний 8-ми шпин-						1,33	4,97	6,61	1260,25						
32	дельный Пресс для	1	35,5	35,5	0,14	0,6	1 22	1.75	2.22	156.25						
19	склейки загото- вок Станок фрезер-	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
25	ный 4-х сторон- ний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
	Станок фрезер- ный 4-х сторон- ний 8-ми шпин-						1,33	4,97	6,61	1260,25						
31	дельный	1	35,5	35,5	0,14	0,6										
40	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
	итого	7		160,2	0,15	0,61	1,29	23,72	30,58	4725,82	5	2,09	49,57	33,64	59,91	91,02
	СП-3															
5	Рейсмусовый станок	1	8,75	8,75	0,14	0,6	1,33	1,23	1,64	76,5625						
11	Пила торцовоч- ная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
15	Станок шипо- резный	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						
21	Пресс для склейки загото- вок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
	Станок фрезер- ный 4-х сторон-						1,33	3,99	5,31	812,25						
27	ний Станок фрезер-	1	28,5	28,5	0,14	0,6										
	ный 4-х сторон- ний 8-ми шпин-		95.7				1,33	4,65	6,18	1102,24						
33	дельный	1	33,2	33,2	0,14	0,6		12,56	16,7	2137,5925		2,35	29,52	18,37	34,77	#0
	итого	6		89,65	0,14	0,6	1,33	12,50	10,7	2.31,3723	4	2,55	27,02	10,57	J-7, / /	52,83
	СП-4 Таль электриче-						1,73	0,55	0,95	30,25						
38	ская Фуговальный	1	5,5	5,5	0,1	0,5			2,33	156,25						
2	станок Пила циркуляр-	1	12,5	12,5	0,14	0,6	1,33	1,75				-				-
8	ная Станок шипо-	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
16	резный	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						

Окончание таблицы 3.3

-	1 Пресс для	2	3	4	5	(5	7	8	9	10	11	12	13	14	15
22	склейки загото- вок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
28	Станок фрезер- ный 4-х сторон- ний	1	28,5	28,5	0,14	0,6	1,33	3,99	5,31	812,25						
	итого	6	-72	68,4	0,14	0,6	1,35	9,36	12,67	1182,28	4	2,35	22	13,94	26,04	39,56
	CII-5															
3	Фуговальный станок	1	11,7	11,7	0,14	0,6	1,33	1,64	2,18	136,89						
9	Пила циркуляр- ная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
18	Станок шипо- резный	1	3	3	0,14	0,6	1,33	0,42	0,56	9						
24	Пресс для склейки загото- вок	1	9,7	9,7	0,14	0,6	1,33	1,36	1,81	94,09						
6	Рейсмусовый станок	1	7,5	7,5	0,14	0,6	1,33	1,05	1,4	56,25						
12	Пила торцовоч- ная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
17	Станок шипо- резный	1	3	3	0,14	0,6	1,33	0,42	0,56	9						
42	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
	итого	8		51,4	0,17	0,63	1,22	8,49	10,32	410,56	6	1,84	15,62	11,35	19,31	29,34
	СП-6															
30	Станок фрезер- ный 4-х сторон- ний	1	25,2	25,2	0,14	0,6	1,33	3,53	4,69	635,04						
36	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
23	Пресс для склейки загото- вок	1	9,7	9.7	0,14	0,6	1,33	1,36	1,81	94,09						
29	Станок фрезер- ный 4-х сторон- ний	1	25,2	25,2	0,14	0,6	1,33	3,53	4,69	635,04						
35	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
39	Таль электриче- ская	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
	Станок фрезер- ный 4-х сторон- ний 8-ми шпин-		·				1,33	4,65	6,18	1102,24						
34	дельный	1	33,2	33,2	0,14	0,6										
41	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
	итого	8		163	0,15	0,61	1,3	23,9	31,02	4389,48	6	1,96	46,84	34,12	57,95	88,05

Таблица 3.4 – Расчет второго уровня электроснабжения (вариант 2)

		Ис	ходные дані	ные												
	по задани	ю технол	югов					Door	четные велі			Kp	Door			
				альная, вленная) сть, кВт		справочн данным		Pac	четные велі	ичины	10 Э.П., п.	ой нагрузки	Расч	етная мощ	юсть	cIp, A
Ha	именование ЭП	Количество Э.П.	ид П€ олониО	Общая Р.,=пр.,	Коэффициент использования, Ки	cosφ	tgφ	К"Р", кВт	К _п Р. tgq, кВар	np²,	Эффективное число Э.П., п.	Коэффициент расчетной нагрузки	Рр, кВт	Ор, кВар	Sp, ĸBA	Расчетный ток Ір, А
	1	2	3	4	5		5	7	8	9	10	11	12	13	14	15
	IIIPA-1															
3	Фуговальный станок	1	11,7	11,7	0,14	0,6	1,33	1,64	2,18	136,89						
9	Пила циркуляр- ная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
18	Станок шипо- резный	1	3	3	0,14	0,6	1,33	0,42	0,56	9						
39	Таль электриче- ская	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
6	Рейсмусовый станок	1	7,5	7,5	0,14	0,6	1,33	1,05	1,4	56,25						
	Пила торцовоч-						1,33	0,77	1,02	30,25						
12	ная Станок шипо-	1	5,5	5,5	0,14	0,6	1,33	0,42	0,56	9						
17	резный Фуговальный	1	3	3	0,14	0,6	1,33	1,75	2,33	156,25						
2	станок Пила циркуляр-	1	12,5	12,5	0,14	0,6										
8	ная Станок шипо-	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
16	резный	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						
38	Таль электриче- ская	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
37	Таль электриче- ская	1	5,5	5,5	0,1	0,5	1,73	0,55	0,95	30,25						
1	Фуговальный станок	1	15,7	15,7	0,14	0,6	1,33	2,2	2,93	246,49						
7	Пила циркуляр- ная	1	8,2	8,2	0,14	0,6	1,33	1,15	1,53	67,24						
14	Станок шипо-	1	4,2	4,2	0,14	0,6	1,33	0,59	0,78	17,64						
	Рейсмусовый						1,33	1,29	1,72	84,64						
4	станок Пила торцовоч-	1	9,2	9,2	0,14	0,6	1,33	0,77	1,02	30,25						
10	ная Станок шипо-	1	5,5	5,5	0,14	0,6		0,59	0,78							
13	резный Рейсмусовый	1	4,2	4,2	0,14	0,6	1,33			17,64						
5	станок Пила торцовоч-	1	8,75	8,75	0,14	0,6	1,33	1,23	1,64	76,5625						
11	ная	1	5,5	5,5	0,14	0,6	1,33	0,77	1,02	30,25						
15	Станок шипо-	1	3,5	3,5	0,14	0,6	1,33	0,49	0,65	12,25						
24	Пресс для склейки загото- вок	1	9,7	9,7	0,14	0,6	1,33	1,36	1,81	94,09						
2-7	Станок фрезер- ный 4-х сторон-	1	2,1	2,1	5,14	0,0	1,33	3,53	4,69	635,04						
30	ний	1	25,2	25,2	0,14	0,6	1,33	در,د	7,07	055,04						
	Станок фрезер- ный 4-х сторон-						1,33	4,3	5,72	942,49						
36	ний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	-,55	.,5	5,72							
23	Пресс для склейки загото- вок	1	9,7	9,7	0,14	0,6	1,33	1,36	1,81	94,09						
23	Станок фрезер- ный 4-х сторон-	1	7,1	7,1	0,14	0,0	1,33	3,53	4,69	635,04						
29	ний	1	25,2	25,2	0,14	0,6	1,33	3,33	4,09	055,04						
	Станок фрезер- ный 4-х сторон-						1,33	4,3	5,72	942,49						
35	ний 8-ми шпин- дельный	1	30,7	30,7	0,14	0,6	1,33	7,5	5,12	772,77						
	итого	27		275,55	0,14	0,6	1,35	37,95	51,12	4561,323	17	1,41	53,51	51,12	74	112,43
	IIIPA-2															
40	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						
	Вентиляционная						0,75	1,68	1,26	7,84						
41	установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84						

Окончание таблицы 3.4

	1	2	3	4	5		б	7	8	9	10	11	12	13	14	15
42	Вентиляционная установка	1	2,8	2,8	0,6	0,8	0,75	1,68	1,26	7,84	10					1.5
20	Пресс для склейки загото- вок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
26	Станок фрезер- ный 4-х сторон- ний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
32	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	35,5	35,5	0,14	0,6	1,33	4,97	6,61	1260,25						
19	Пресс для склейки загото- вок	1	12,5	12,5	0,14	0,6	1,33	1,75	2,33	156,25						
25	Станок фрезер- ный 4-х сторон- ний	1	30,7	30,7	0,14	0,6	1,33	4,3	5,72	942,49						
31	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	35,5	35,5	0,14	0,6	1,33	4,97	6,61	1260,25						
21	Пресс для склейки загото- вок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
27	Станок фрезер- ный 4-х сторон- ний	1	28,5	28,5	0,14	0,6	1,33	3,99	5,31	812,25						
33	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	33,2	33,2	0,14	0,6	1,33	4,65	6,18	1102,24						
22	Пресс для склейки загото- вок	1	10,2	10,2	0,14	0,6	1,33	1,43	1,9	104,04						
28	Станок фрезер- ный 4-х сторон- ний	1	28,5	28,5	0,14	0,6	1,33	3,99	5,31	812,25						
34	Станок фрезер- ный 4-х сторон- ний 8-ми шпин- дельный	1	33,2	33,2	0,14	0,6	1,33	4,65	6,18	1102,24						
	итого	15		309,6	0,15	0,62	1,27	47,22	59,88	8778,56	11	1,61	76,02	59,88	96,77	147,03

3.2 Светотехнический расчет электрического освещения

3.2.1 Расчет рабочего освещения

Цех имеет не одно помещение. Следовательно, необходимо его разбить на несколько прямоугольных зон, чтобы в пределах каждой произвести светотехнический расчет. Имеются три одинаковых пролета цеха размерами 30x12x10. Т.е. можно сделать расчет для одного пролета, т.к. остальные будут идентичны.

Произведем пример расчета освещения для пролета А-Б в осях 1-6. Размеры этого пролета:

$$L_{II} \times B_{II} \times H_{II} = 30 \times 12 \times 10$$
.

Высота расчётной поверхности $h_{\!\scriptscriptstyle P}=0,8{\scriptscriptstyle M}$, расстояние от перекрытия до светильника $h_{\!\scriptscriptstyle C}=1,2{\scriptscriptstyle M}$.

Расстояние от светильников до рабочей поверхности (расчетная высота):

$$h = H_{II} - h_C - h_P = 10 - 1, 2 - 0, 8 = 8M.$$

 $\lambda_{\ni} = L \, / \, h$ — расстояние между светильниками к расчётной высоте.

Принимаем $\lambda_9=0.9$ (из диапазона $0.9\div1$) [12, таблица 10.4] для светильников типа РСП 05 / Г03 с глубокой силой света. Тогда расстояние между светильниками в ряду:

$$L_A = \lambda_9 \cdot h = 0.9 \cdot 8 = 7.2 M.$$

В ряду можно разместить n=5 светильников, тогда расстояние от крайних светильников до стены:

$$2 \cdot l_A = 30 - (5 - 1) \cdot 7, 2 = 2, 4 \Longrightarrow l_A = 1, 2 \text{ M}.$$

Принимаем число рядов $\,m=2\,,\,$ тогда $\,L_{_B}=8\,$ м и расстояние от крайних светильников до стены:

$$2 \cdot l_{B} = 12 - (2 - 1) \cdot 8 = 4 \Longrightarrow l_{B} = 2 \text{ M}.$$

В итоге общее число светильников в рассматриваемом пролете:

$$N = n \cdot m = 5 \cdot 2 = 10 \text{ HIT.}$$

Отношение

$$\frac{L_{\rm B}}{L_{\rm A}} = \frac{8}{7,2} = 1,11 < 1,5.$$

Размещение светильников рабочего освещения в рассматриваемом пролете представлено на рисунке 3.3.

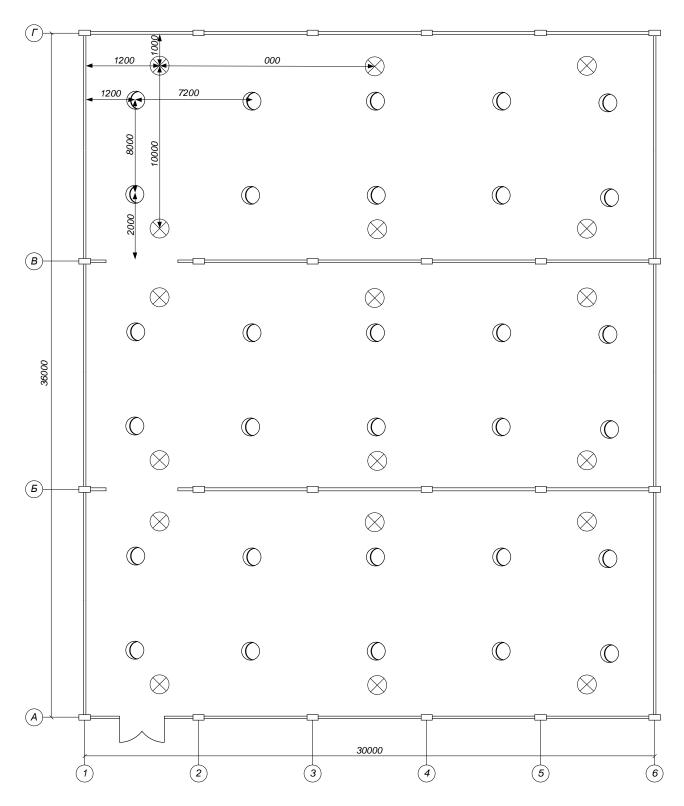


Рисунок 3.3 – Размещение светильников рабочего и аварийного освещения

Задачей расчета осветительной установки является определение числа и мощности источника света или определение фактической освещенности, создаваемой спроектированной установкой.

Расчет освещения выполняется методом коэффициента использования светового потока, предназначенным для расчета равномерного освещения го-

ризонтальных поверхностей при отсутствии крупных затеняющих предметов. При расчете по этому методу световой поток ламп в каждом светильнике, необходимый для создания заданной минимальной освещенности, определяется по формуле [12, с. 261]:

$$\Phi_{p} = \frac{E_{H} \cdot K_{3A\Pi} \cdot F \cdot z}{N \cdot \eta}, \tag{3.1}$$

где Е_н – норма освещенности;

 $K_{3A\Pi} = 1,5 - коэффициент запаса [10, таблица 4.4],$

F – площадь освещаемой поверхности, M^2 ,

 $z = E_{CP}/E_H$ — коэффициент минимальной освещенности (для ламп ДРЛ z = 1,15, для люминесцентных — z = 1,1),

N – число светильников,

 η — коэффициент использования светового потока источника света, доли единиц.

По значению Φ выбирается стандартная лампа так, чтобы ее поток отличался от расчетного значения на -10% ... +20%.

Индекс помещения определяется по [10] при условии, что $L / B \le 3,5$.

Принимаем $\rho_{\Pi} = 50\%$; $\rho_{CT} = 30\%$; $\rho_{P} = 10\%$ [10, таблица 5.1, с. 126]

 ρ_{Π} , ρ_{CT} , ρ_{P} — коэффициенты отражения поверхностей (потолка, стен, рабочей поверхности) необходимы для выбора η .

Коэффициент использования светового потока является функцией индекса помещения:

$$\begin{split} i &= \frac{L_{II} \cdot B_{II}}{h \cdot \left(L_{II} + B_{II} \right)}. \\ i &= \frac{30 \cdot 12}{8 \cdot \left(30 + 12 \right)} = 1,1. \end{split} \tag{3.2}$$

Тогда коэффициент использования светового потока по [10, таблица 5.9, с.134] составит:

$$\eta = 0.62$$
.

Норма освещенности принимается по таблице 1 (СП 52.13330.2011) для производственных помещений при системе общего освещения:

 $E_{\rm H}$ = 200 лк (при работах средней точности).

Тогда по формуле (3.1) световой поток одной лампы:

$$\Phi_{\rm P} = \frac{200 \cdot 1.5 \cdot (30 \cdot 12) \cdot 1.15}{10 \cdot 0.62} = 20032$$
 Лм.

По величине Φ_p в [11, таблица 14.17, с. 373] подбираем лампу типа ДРЛ400(12)-4 мощностью 400 Вт со световым потоком Φ_{HOM} = 24000 лм. Тип цоколя Е40.

Отклонение светового потока определяется по формуле:

$$\Delta \Phi = \frac{\Phi_{\text{HOM}} - \Phi_{\text{P}}}{\Phi_{\text{P}}} \cdot 100\% = \frac{24000 - 20032}{20032} \cdot 100\% = 19,8\%.$$

различие между Φ_{HOM} и Φ_{p} находится в допустимых пределах -10...+20%.

Коэффициенты использования светового потока для светильников с лампами ДРЛ представлены в [10, таблица 5.9], а с люминесцентными лампами – в [10, таблица 5.11]. Данные о лампах ДРЛ с цоколем Е40 приведены в [11, таблица 14.17, с. 373], о люминесцентных лампах с цоколем G13 – в [11, таблица 14.10, с. 366].

3.2.2 Расчет аварийного освещения

Расчет аварийного освещения производим по аналогии с расчетом рабочего освещения для пролета A-Б в осях 1-6.

Высота подвеса светильников аварийного освещения (расчетная высота):

$$h = H_{II} - h_C - h_P = 10 - 1, 2 - 0, 8 = 8M.$$

Принимаем $\lambda_9 = 1,8$ (из диапазона $1,6 \div 1,8$) [12, таблица 10.4] для светильников типа НСП 02 [11, таблица 14.31, с. 383] с полуширокой силой света.

$$L_A = \lambda_B \cdot h = 1, 8 \cdot 8 = 14, 4M.$$

В ряду можно разместить n=3 светильников, тогда расстояние от крайних светильников до стены:

$$2 \cdot l_A = 30 - (3 - 1) \cdot 14, 4 = 2, 4 \Rightarrow l_A = 1, 2 \text{ M}.$$

Принимаем число рядов $\,m=2\,,\,$ тогда $\,L_{_{B}}=10\,$ м $\,$ и расстояние от крайних светильников до стены:

$$2 \cdot l_{B} = 12 - (2 - 1) \cdot 10 = 2 \Longrightarrow l_{B} = 1 \text{ M}.$$

В итоге общее число светильников в цехе

$$N = n \cdot m = 3 \cdot 2 = 6 \text{ HIT.}$$

Отношение

$$\frac{L_A}{L_B} = \frac{14.4}{10} = 1,44 < 1.5$$
.

Коэффициент использования светового потока по формуле (5.2):

$$i = \frac{30 \cdot 12}{8 \cdot (30 + 12)} = 1,1.$$

Тогда коэффициент использования светового потока по [10, таблица 5.19, с.144] составит:

$$\eta = 0.29$$
.

Норма освещенности принимается в соответствии с [10, с. 84] и составляет 5% от нормированной освещенности рабочего освещения:

$$E_{\rm H} = 0.05 \cdot 200 = 10$$
 лк.

Коэффициент запаса для светильников аварийного освещения:

$$K_{3A\Pi} = 1,5$$
 [10, таблица 4.4].

По формуле (3.1) световой поток одной лампы:

$$\Phi_{\rm P} = \frac{10 \cdot 1, 5 \cdot (30 \cdot 12) \cdot 1, 15}{6 \cdot 0, 29} = 3569 \text{ Лм.}$$

По величине Φ_p в [11, таблица 14.31, с. 383] подбираем светодиодную лампу типа NLL-T105-45-230-840-E27, мощностью 45 Вт со световым потоком Φ_{HOM} = 4000 лм. Тип цоколя E27.

Отклонение светового потока:

$$\Delta\Phi = \frac{4000 - 3569}{3569} \cdot 100\% = 12,1\%.$$

различие между Φ_{HOM} и Φ_{p} находится в допустимых пределах -10...+20%.

Для остальных помещений расчеты для аварийного освещения аналогичны. Коэффициенты использования светового потока для светильников типа НСП представлены в [10, таблица 5.7]. Данные о светодиодных лампах типа NLL с цоколем E27 приведены на сайте navigator-light.ru.

3.2.3 Мощность осветительной нагрузки цеха

Мощность освещения определяется по формуле:

$$S_{ocb} = \sqrt{P_{ocb}^2 + Q_{ocb}^2}$$
,

где активная мощность освещения:

$$P_{\text{осв}} = N P_{\text{ном}} K_c K_{\text{пра}}$$

N – количество ламп;

Р_{ном} – номинальная мощность светильника, кВт;

 K_c — коэффициент спроса, K_c = 0,95 — для производственных зданий, состоящих из отдельных крупных пролетов; K_c = 0,85 — для производственных зданий, состоящих из ряда отдельных помещений, K_c = 0,6 — для складских помещений [18, c. 271];

 $K_{\text{пра}}$ — коэффициент пускорегулирующей аппаратуры, для ламп ДРЛ $K_{\text{пра}(\text{ДРЛ})}$ = 1,1, для светодиодных ламп $K_{\text{пра}(\text{СЛ})}$ = 1,0;

реактивная нагрузка осветительной сети:

$$Q_{ocb} = P_{ocb} tg\phi$$
,

где коэффициент мощности: для ламп ДРЛ $\cos\phi_{\text{ДРЛ}} = 0,57-0,6$; для светодиодных ламп $\cos\phi_{\text{СЛ}} = 0,95$.

Расчет мощности освещения представим в таблице 3.5.

Таблица 3.5 – Мощность освещения

Наименование помеще- ния	N	Р _{ном} , кВт	K _c	$K_{\Pi PA}$	Р _{ОСВ} , кВт	cosφ	tgφ	Q _{ОСВ} , кВт
1	2	3	4	5	6	7	8	9
Цех погонажных изделий	3x10=30	0,4	0,95	1,1	12,54	0,57	1,44	18,06

3.3 Технико-экономическое сравнение вариантов силовой сети

3.3.1 Выбор коммутационно-защитных аппаратов

Выбор автоматических выключателей для защиты отдельных электроприемников производим по следующим условиям [21, с. 42-43; 18, с. 289-291]:

а) по номинальному напряжению

$$U_a \ge U_{\text{HOM CeTH}},$$
 (3.9)

где $\,U_{_a}\,$ - номинальное напряжение автомата, $\,B.\,$

б) по номинальному току (уставка теплового расцепителя):

$$I_{\text{HOM a}} \ge 1,25 \cdot I_{\text{p}},\tag{3.10}$$

где $I_{_{\text{ном.a.}}}$ - номинальный ток автомата, A.

в) по номинальному току электромагнитного расцепителя:

$$I_{\text{HOM TO}} \ge 1, 2 \cdot I_{\text{ITVCK}}, \tag{3.11}$$

где І – номинальный ток срабатывания токовой отсечки, А:

$$\mathbf{I}_{\text{\tiny HOM.TO}} = K_{v} \cdot \mathbf{I}_{\text{\tiny HOM.A}},$$

где кратность уставки K_y принимается из ряда 3, 5, 7, 10 для автоматов серии ВА. Для выполнения условия достаточно взять кратность не менее 5-7, соразмерную с кратностью пуска электродвигателя отдельного ЭП, принятую ранее.

Результаты выбора автоматов для отдельных электроприемников представлены в таблице 3.6.

Таблица 3.6 – Выбор автоматов для отдельных электроприемников

					D				
		Расчетный			Расчетный ток отсеч-				Отключающая
		ток	$I_{\text{ном.a}}$,		ки,		$I_{\text{hom.to}}$,	Тип авто-	способность,
№ЭП	I _p , A	1,25·I _p , A	A	Іпуск, А	1,2·I _{пуск} , А	Ко	A	мата	І _{откл} , кА
1	2	3	4	5	6	7	8	9	10
1	39,76	49,7	50	198,8	238,56	7	350	BA 51-31	6
2			40		189,9	7	280	BA 51-31	6
3	31,65	39,56 37,04	40	158,25 148,15	177,78	7	280	BA 51-31	6
4	29,63 23,3	29,13	31,5	116,5	139,8	7	220,5	BA 51-31	6
5	22,16	27,7	31,5	110,3	132,96	7	220,5	BA 51-31	6
6	18,99	23,74	25	94,95	113,94	7	175	BA 51-31	3
7	20,76	25,95	31,5	103,8	124,56	7	220,5	BA 51-23	6
8	20,76	25,95	31,5	103,8	124,56	7	220,5	BA 51-31	6
9	20,76	25,95	31,5	103,8	124,56	7	220,5	BA 51-31	6
10	13,93	17,41	20	69,65	83,58	7	140	BA 51-31	3
11	13,93	17,41	20	69,65	83,58	7	140	BA 51-25	3
12	13,93	17,41	20	69,65	83,58	7	140	BA 51-25	3
13	10,64	13,3	16	53,2	63,84	7	112	BA 51-25	3
14	10,64	13,3	16	53,2	63,84	7	112	BA 51-25	3
15	8,86	11,08	12,5	44,3	53,16	7	87,5	BA 51-25	2,5
16	8,86	11,08	12,5	44,3	53,16	7	87,5	BA 51-25	2,5
17	7,6	9,5	10	38	45,6	7	70	BA 51-25	2,5
18	7,6	9,5	10	38	45,6	7	70	BA 51-25	2,5
19	31,65	39,56	40	158,25	189,9	7	280	BA 51-31	6
20	31,65	39,56	40	158,25	189,9	7	280	BA 51-31	6
21	25,83	32,29	40	129,15	154,98	7	280	BA 51-31	6
22	25,83	32,29	40	129,15	154,98	7	280	BA 51-31	6
23	24,56	30,7	31,5	122,8	147,36	7	220,5	BA 51-31	6
24	24,56	30,7	31,5	122,8	147,36	7	220,5	BA 51-31	6
25	77,74	97,18	100	388,7	466,44	7	700	BA 51-31	7
26	77,74	97,18	100	388,7	466,44	7	700	BA 51-31	7
27	72,17	90,21	100	360,85	433,02	7	700	BA 51-31	7
28	72,17	90,21	100	360,85	433,02	7	700	BA 51-31	7
29	63,81	79,76	80	319,05	382,86	7	560	BA 51-31	6
30	63,81	79,76	80	319,05	382,86	7	560	BA 51-31	6
31	89,89	112,36	160	449,45	539,34	7	1120	BA 51-35	15
32	89,89	112,36	160	449,45	539,34	7	1120	BA 51-35	15
33	84,07	105,09	160	420,35	504,42	7	1120	BA 51-35	15
34	84,07	105,09	160	420,35	504,42	7	1120	BA 51-35	15
35	77,74	97,18	100	388,7	466,44	7	700	BA 51-31	7
36	77,74	97,18	100	388,7	466,44	7	700	BA 51-31	7
37	10,57	13,21	16	52,85	63,42	7	112	BA 51-25	3
38	10,57	13,21	16	52,85	63,42	7	112	BA 51-25	3
39	10,57	13,21	16	52,85	63,42	7	112	BA 51-25	3
40	5,32	6,65	8	26,6	31,92	7	56	BA 51-25	2
41	5,32	6,65	8	26,6	31,92	7	56	BA 51-25	2
42	5,32	6,65	8	26,6	31,92	7	56	BA 51-25	2

Выбор автоматических выключателей для защиты линий (к СП), питающих группу электроприемников, производим по следующим условиям [21, п.1.8, с. 42]:

а) по номинальному напряжению

$$U_a \ge U_{\text{HOM CETU}},$$
 (3.12)

где $\,U_{_a}\,$ - номинальное напряжение автомата, $\,B.\,$

Все выбираемые автоматы рассчитаны на напряжение до 0,66 кВ.

б) по номинальному току:

$$I_{\text{\tiny HOM a}} \ge 1, 1 \cdot I_{\text{\tiny M}}, \tag{3.13}$$

где $I_{\text{ном a}}$ - номинальный ток автомата, A;

I_м - максимальный расчетный ток защищаемой линии.

Для защиты распределительных пунктов и шинопроводов выбираем автоматы серии BA51 [21, таблица A.6] (таблицы 3.7-3.8).

Таблица 3.7 – Выбор автоматов для защиты СП (вариант 1)

Наименование	Расчетный ток присоединения, А	Расчетный ток для выбора автомата, А	Номинальный ток автомата $I_{\text{ном.a}}$, А	Пиковый ток І _{пик} , А	Расчетный ток отсеч- ки, 1,2·I _{пик} , А	K _o	I _{ном.то} ,	Тип ав- томата	Отключающая способность, $I_{\text{откл}}$, кА
СП-1	26,74	29,41	31,5	133,7	160,44	7	220,5	BA 51-31	6
СП-2	91,02	100,12	160	455,1	546,12	7	1120	BA 51-35	15
СП-3	52,83	58,11	63	264,15	316,98	7	441	BA 51-31	6
СП-4	39,56	43,52	50	197,8	237,36	7	350	BA 51-31	6
СП-5	29,34	32,27	40	146,7	176,04	7	280	BA 51-31	6
СП-6	88,05	96,86	100	440,25	528,3	7	700	BA 51-31	7

Таблица 3.8 – Выбор автоматов для защиты ШРА (вариант 2)

Наименование	Расчетный ток присоединения, А	Расчетный ток для выбора автомата, А	Номинальный ток автомата $I_{\text{ном.a}}$, А	Пиковый ток $I_{\text{пик}}$,	Расчетный ток отсеч- ки, 1,2·I _{пик} , А	Ko	I _{ном.то} ,	Тип ав- томата	Отключающая способность, $I_{\text{откл}}$, кА
IIIPA-1	112,43	123,67	160	562,15	674,58	7	1120	BA 51-35	15
ШРА-2	147,03	161,73	250	735,15	882,18	7	1750	BA 51-35	15

3.3.2 Выбор распределительных пунктов

Распределительные пункты выбираем исходя из количества присоединений и рабочего тока самого пункта или шинопровода и номинального напряжения [18, с. 184-185].

Выбор для вариантов 1 и 2 представлен соответственно в таблицах 3.9-3.10.

Таблица 3.9 – Выбор силовых пунктов (вариант 1)

Наименование	Расчетный ток, А	Тип СП	Допустимый ток, А	Количество присоединений СП
СП-1	26,74	ПР8804-1008	40	8
СП-2	91,02	ПР8804-1004	100	8
СП-3	52,83	ПР8804-1006	63	8
СП-4	39,56	ПР8804-1008	40	8
СП-5	29,34	ПР8804-1008	40	8
СП-6	88,05	ПР8804-1004	100	8

Таблица 3.10 – Выбор шинопроводов (вариант 2)

Hamananan	Расчетный ток,	Тип ининоправа	Потиотиций том А
Наименование	A	Тип шинопровода	Допустимый ток, А
ШРА-1	112,43	ШРА4-160-44-1У3	160
ШРА-2	147,03	ШРА4-160-44-1У3	160

3.3.3 Выбор сечений кабельных линий

Для питания отдельных электроприемников применяем кабели марки ABBГ [14]. Проводники для линий к отдельным электроприемникам выбираются с учетом соответствия аппарату защиты согласно условиям [21, с. 43]:

$$I_{m} \ge I_{p}, \tag{3.14}$$

$$I_{np} \ge K_{MI} \cdot I_{HOMA}, \qquad (3.15)$$

где $K_{\text{m}} = 1$ — поправочный коэффициент защиты (для невзрыво - и непожароопасных помещений);

 $I_{_{\text{ном.a}}}$ – номинальный ток автомата, А (таблица 3.2, графа 4).

Выбор сечений проводов и кабельных линий приведен в таблице 3.11.

Для питания СП и ШРА применяем кабели марки АВВГ, выбор сечения которых производится по расчетному току [7, таблица 1.3.5] (таблицы 3.12-3.13).

Таблица 3.11 – Выбор сечений проводов и кабельных линий

№ЭП	Номинальный ток автомата, А	Допустимый ток провода (кабеля), А	Сечение основной жилы S, мм ²	Марка, сечение провода (кабеля)
1	2	3	4	5
1	50	55	16	ABBΓ 3x16+1x10
2	40	55	16	ABBΓ 3x16+1x10
3	40	55	16	ABBΓ 3x16+1x10
4	31,5	39	10	ABBΓ 4x10
5	31,5	39	10	ABBΓ 4x10
6	25	30	6	ABBΓ 4x6
7	31,5	39	10	ABBΓ 4x10
8	31,5	39	10	ABBΓ 4x10
9	31,5	39	10	ABBΓ 4x10
10	20	23	4	ABBΓ 4x4
11	20	23	4	ABBΓ 4x4
12	20	23	4	ABBΓ 4x4
13	16	23	4	ABBΓ 4x4
14	16	23	4	ABBΓ 4x4
15	12,5	23	4	ABBΓ 4x4
16	12,5	23	4	ABBΓ 4x4
17	10	23	4	ABBΓ 4x4
18	10	23	4	ABBΓ 4x4
19	40	55	16	ABBΓ 3x16+1x10
20	40	55	16	ABBΓ 3x16+1x10
21	40	55	16	ABBΓ 3x16+1x10
22	40	55	16	ABBΓ 3x16+1x10
23	31,5	39	10	ABBΓ 4x10
24	31,5	39	10	ABBΓ 4x10
25	100	120	50	ABBΓ 3x50+1x25
26	100	120	50	ABBΓ 3x50+1x25
27	100	120	50	ABBΓ 3x50+1x25
28	100	120	50	ABBΓ 3x50+1x25
29	80	85	35	ABBΓ 3x35+1x16
30	80	85	35	ABBΓ 3x35+1x16
31	160	175	95	ABBΓ 3x95+1x50
32	160	175	95	ABBΓ 3x95+1x50
33	160	175	95	ABBΓ 3x95+1x50
34	160	175	95	ABBΓ 3x95+1x50
35	100	120	50	ABBΓ 3x50+1x25
36	100	120	50	ABBΓ 3x50+1x25
37	16	23	4	ABBΓ 4x4
38	16	23	4	ABBΓ 4x4
39	16	23	4	ABBΓ 4x4
40	8	23	4	ABBΓ 4x4
41	8	23	4	ABBΓ 4x4
42	8	23	4	ABBΓ 4x4

Таблица 3.12 – Выбор кабелей для питания СП (вариант 1)

Номер СП	Ток срабатывания теплового расцепителя автомата, А	Допустимый ток провода (кабеля), А	Сечение основной жилы S, мм ²	Марка, сечение провода (кабеля)
1	2	3	4	5
СП-1	31,5	55	16	ABBΓ 3x16+1x10
СП-2	160	175	95	ABBΓ 3x95+1x50
СП-3	63	85	35	ABBΓ 3x35+1x16
СП-4	50	85	35	ABBΓ 3x35+1x16
СП-5	40	85	35	ABBΓ 3x35+1x16
СП-6	100	120	50	ABBΓ 3x50+1x25

Таблица 3.13 – Выбор кабелей для питания ШРА (вариант 2)

Номер ШРА	Ток срабатывания теплового расцепителя автомата, А	Допустимый ток провода (кабеля), А	Сечение основной жилы S, мм ²	Марка, сечение провода (кабеля)
1	2	3	4	5
ШРА-1	160	175	95	ABBΓ 3x95+1x50
ШРА-2	250	280	150	ABBΓ 3x150+1x70

Расчет троллейных линий

Расчет троллейных линий крановых установок, где в качестве материала применена угловая сталь, может быть произведён методом, который сводится к выбору размеров угловой стали, удовлетворяющих условиям нагрева и допустимой потери напряжения.

Первое условие проверяется сравнением тока I_{30} - активной тридцатиминутной нагрузки — с допустимым током для данного профиля угловой стали:

$$I_{MAKC} = I_{30} = \sqrt{(P_{nomp} \cdot K_{30})^2 + (P_{30} \cdot tg\phi)^2} / (\sqrt{3} \cdot U), \qquad (3.16)$$

где $P_{\textit{nomp}}$ – потребляемая мощность, определяемая по номинальной мощности $(P_{\textit{hom}})$ и к.п.д. η ,

 K_{30} - коэффициент спроса в зависимости от режима работы крана и эффективного числа электроприемников $n_{\rm 3}$.

Выбранный размер угловой стали проверяется на допустимую потерю напряжения:

$$\Delta U_{\%} = m \cdot L, \tag{3.17}$$

где т – удельная потеря напряжения, %/м;

L — расстояние от точки присоединения питающей линии до наиболее удаленного конца троллеев.

Произведем расчет крановых троллеев для электропотребителей № 37,38,39.

Цель: произвести выбор троллеев из угловой стали с наибольшим удалением от точки присоединения питания $L=30~\mathrm{M}$.

Расчет для ЭП № 37.

$$P_{nomp}$$
 = 3,48 кВт (из расчета 1 УР).

По [3, рисунок 5.14, с. 217] определяем K_{30} — коэффициент спроса для кранов для эффективного числа электроприемников n_9 =1 при среднем режиме работы: $K_{30} = 0,5$.

Определим мощность активной тридцатиминутной нагрузки:

$$P_{30} = P_{nomn} \cdot K_{30} = 3,48 \cdot 0,5 = 1,74 \text{ KBT}.$$

Определим $tg\phi$ по коэффициенту мощности: $tg\phi = 1,73$, при $cos\phi = 0,5$.

Определяем максимальный ток, равный току активной тридцатиминутной нагрузки:

$$I_{MAKC} = I_{30} = \sqrt{(5,15 \cdot 0,5)^2 + (2,58 \cdot 1,73)^2} / (\sqrt{3} \cdot 0,38) = 5,28 A.$$

Определим пиковый (кратковременный) ток крана:

$$I_{\Pi H K} = I_{\Pi V C K, M A K C} + (I_{M A K C} - K_{30} \cdot I_{H O M}), \tag{3.18}$$

где $I_{\text{ном}}$ – номинальный ток крана (табл. 4.1);

 $I_{\text{пуск,макс}}$ – максимальный пусковой ток крана (табл. 4.1).

$$I_{\text{THIK}} = 52,85 + (5,28 - 0,5 \cdot 10,57) = 52,85 A.$$

Для пикового тока, равного 52,85 А подбираем угловую сталь размером (25×25×3) мм при $I_{nu\kappa}=155$ А с коэффициентом удельных потерь m=0,1 %/м [3, таблица 5.13, с. 217].

Проверяем выбранную сталь по току нагрузки $I_{30} = 5,28$ А. Для стали размером (25×25×3) мм длительно допустимый переменный ток составляет $I_{\text{доп}} = 155$ А, что больше $I_{30} = 5,28$ А. Следовательно, выбранная сталь удовлетворяет условиям нагрева.

Проверим выбранный размер угловой стали на допустимую потерю напряжения:

$$\Delta U_{\%} = 0.1 \cdot 30 = 3\%$$
.

Полученные значения падения напряжения при пуске двигателя не превышают допустимое (10%), поэтому подпитки к ним не требуется.

3.3.4 Расчет потерь активной и реактивной мощности и напряжения

Произведем расчет потерь мощности и напряжения в кабельных линиях. Потеря напряжения в процентах к номинальному напряжению сети [18, с. 54]:

$$\Delta U = \sqrt{3} \cdot I_{p} \cdot l \cdot (r_{yx} \cdot \cos \varphi + x_{yx} \cdot \sin \varphi), \qquad (3.19)$$

где l - длина кабельной линии, км; $\mathbf{r}_{y_{\rm J}}$, $\mathbf{x}_{y_{\rm J}}$ - удельное активное и реактивное сопротивление кабеля, Ом/км; $\mathbf{I}_{\rm p}$ - расчетный ток электроприемника, А.

Потеря напряжения в процентах к номинальному напряжению сети:

$$\Delta U_{\%} = \frac{\Delta U \cdot 100\%}{U_{\text{HOM}}},\tag{3.20}$$

где $U_{\text{ном}}$ - номинальное напряжение сети, B.

Потеря активной и реактивной мощности:

$$\Delta P = 3 \cdot I_p^2 \cdot r_{y\pi} \cdot l, \tag{3.21}$$

$$\Delta Q = 3 \cdot I_p^2 \cdot x_{vx} \cdot l, \tag{3.22}$$

где I_{PAB} — максимальный рабочий ток электроприемника, A; l — длина кабельной линии, км; r_{yA} , x_{yA} — удельное активное и реактивное сопротивление кабеля, Om/km.

Результаты расчетов потерь в кабельных линиях к электроприемникам по двум вариантам соответственно представлены в таблицах 3.14-3.15.

Таблица 3.14 – Расчет потерь мощности и напряжения (1 вариант)

No	соѕф	sinф	L, м	I _p , A	S, mm ²	r _{уд} , Ом/км	х _{уд} , Ом/км	ΔU, %	ΔР, кВт	ΔU, Β	ΔQ,
										·	квар
1	0,6	3 0,8	10	5 39,76	6 16	7 1,94	8 0,0675	9 0,22	10 0,092	0,836	0,003
2	0,6	0,8	6	31,65	16	1,94	0,0675	0,22	0,092	0,830	0,003
3	0,6	0,8	5	29,63	16	1,94	0,0675	0,11	0,033	0,304	0,001
4	0,6	0,8	2	23,3	10	3,1	0,0073	0,08	0,020	0,304	0,001
5	0,6	0,8	6	22,16	10	3,1	0,073	0,04	0,01	0,132	0,001
6	0,6	0,8	12	18,99	6	5,17	0,073	0,33	0,027	1,254	0,001
7	0,6	0,8	10	20,76	10	3,17	0,073	0,33	0,04	0,684	0,001
8	0,6	0,8	3	20,76	10	3,1	0,073	0,05	0,012	0,19	0
9	0,6	0,8	2	20,76	10	3,1	0,073	0,03	0,008	0,152	0
10	0,6	0,8	2	13,93	4	7,74	0,095	0,04	0,009	0,228	0
11	0,6	0,8	2	13,93	4	7,74	0,095	0,06	0,009	0,228	0
12	0,6	0,8	11	13,93	4	7,74	0,095	0,33	0,05	1,254	0,001
13	0,6	0,8	6	10,64	4	7,74	0,095	0,14	0,016	0,532	0
14	0,6	0,8	13	10,64	4	7,74	0,095	0,3	0,034	1,14	0
15	0,6	0,8	3	8,86	4	7,74	0,095	0,06	0,005	0,228	0
16	0,6	0,8	3	8,86	4	7,74	0,095	0,06	0,005	0,228	0
17	0,6	0,8	12	7,6	4	7,74	0,095	0,2	0,016	0,76	0
18	0,6	0,8	4	7,6	4	7,74	0,095	0,07	0,005	0,266	0
19	0,6	0,8	2	31,65	16	1,94	0,0675	0,04	0,012	0,152	0
20	0,6	0,8	10	31,65	16	1,94	0,0675	0,18	0,058	0,684	0,002
21	0,6	0,8	7	25,83	16	1,94	0,0675	0,1	0,027	0,38	0,001
22	0,6	0,8	6	25,83	16	1,94	0,0675	0,09	0,023	0,342	0,001
23	0,6	0,8	16	24,56	10	3,1	0,073	0,34	0,09	1,292	0,002
24	0,6	0,8	7	24,56	10	3,1	0,073	0,15	0,039	0,57	0,001
25	0,6	0,8	10	77,74	50	0,62	0,0625	0,15	0,112	0,57	0,011
26	0,6	0,8	2	77,74	50	0,62	0,0625	0,03	0,022	0,114	0,002
27	0,6	0,8	9	72,17	50	0,62	0,0625	0,12	0,087	0,456	0,009
28	0,6	0,8	10	72,17	50	0,62	0,0625	0,14	0,097	0,532	0,01
29	0,6	0,8	10	63,81	35	0,89	0,0637	0,17	0,109	0,646	0,008
30	0,6	0,8	9	63,81	35	0,89	0,0637	0,15	0,098	0,57	0,007
31	0,6	0,8	7	89,89	95	0,326	0,0602	0,07	0,055	0,266	0,01
32	0,6	0,8	15	89,89	95	0,326	0,0602	0,15	0,119	0,57	0,022
33	0,6	0,8	15	84,07	95	0,326	0,0602	0,14	0,104	0,532	0,019
34	0,6	0,8	10	84,07	95	0,326	0,0602	0,09	0,069	0,342	0,013
35	0,6	0,8	4	77,74	50	0,62	0,0625	0,06	0,045	0,228	0,005
36	0,6	0,8	4	77,74	50	0,62	0,0625	0,06	0,045	0,228	0,005
37	0,5	0,87	1	10,57	4	7,74	0,095	0,02	0,003	0,076	0
38	0,5	0,87	1	10,57	4	7,74	0,095	0,02	0,003	0,076	0
39	0,5	0,87	1	10,57	4	7,74	0,095	0,02	0,003	0,076	0
40	0,8	0,6	1	5,32	4	7,74	0,095	0,02	0,001	0,076	0
41	0,8	0,6	3	5,32	4	7,74	0,095	0,05	0,002	0,19	0
42	0,8	0,6	1	5,32	4	7,74	0,095	0,02	0,001	0,076	0

Таблица 3.15 – Расчет потерь мощности и напряжения (2 вариант)

						r _{уд} ,	х _{уд} ,		ΔΡ,		ΔQ,
№	сosф	sinф	L, м	I _p , A	S, MM ²	Ом/км	Ом/км	ΔU, %	кВт	ΔU, B	квар
1	2	3	4	5	6	7	8	9	10	11	12
1	0,6	0,8	10	39,76	16	1,94	0,0675	0,22	0,092	0,836	0,003
2	0,6	0,8	10	31,65	16	1,94	0,0675	0,18	0,058	0,684	0,002
3	0,6	0,8	8	29,63	16	1,94	0,0675	0,13	0,041	0,494	0,001
4	0,6	0,8	5	23,3	10	3,1	0,073	0,1	0,025	0,38	0,001
5	0,6	0,8	9	22,16	10	3,1	0,073	0,17	0,041	0,646	0,001
6	0,6	0,8	16	18,99	6	5,17	0,09	0,44	0,089	1,672	0,002
7	0,6	0,8	14	20,76	10	3,1	0,073	0,25	0,056	0,95	0,001
8	0,6	0,8	6	20,76	10	3,1	0,073	0,11	0,024	0,418	0,001
9	0,6	0,8	5	20,76	10	3,1	0,073	0,09	0,02	0,342	0
10	0,6	0,8	5	13,93	4	7,74	0,095	0,15	0,023	0,57	0
11	0,6	0,8	5	13,93	4	7,74	0,095	0,15	0,023	0,57	0
12	0,6	0,8	15	13,93	4	7,74	0,095	0,45	0,068	1,71	0,001
13	0,6	0,8	9	10,64	4	7,74	0,095	0,21	0,024	0,798	0
14	0,6	0,8	17	10,64	4	7,74	0,095	0,39	0,045	1,482	0,001
15	0,6	0,8	6	8,86	4	7,74	0,095	0,11	0,011	0,418	0
16	0,6	0,8	7	8,86	4	7,74	0,095	0,13	0,013	0,494	0
17	0,6	0,8	16	7,6	4	7,74	0,095	0,26	0,021	0,988	0
18	0,6	0,8	8	7,6	4	7,74	0,095	0,13	0,011	0,494	0
19	0,6	0,8	5	31,65	16	1,94	0,0675	0,09	0,029	0,342	0,001
20	0,6	0,8	14	31,65	16	1,94	0,0675	0,25	0,082	0,95	0,003
21	0,6	0,8	11	25,83	16	1,94	0,0675	0,16	0,043	0,608	0,001
22	0,6	0,8	9	25,83	16	1,94	0,0675	0,13	0,035	0,494	0,001
23	0,6	0,8	20	24,56	10	3,1	0,073	0,43	0,112	1,634	0,003
24	0,6	0,8	11	24,56	10	3,1	0,073	0,24	0,062	0,912	0,001
25	0,6	0,8	14	77,74	50	0,62	0,0625	0,21	0,157	0,798	0,016
26	0,6	0,8	6	77,74	50	0,62	0,0625	0,09	0,067	0,342	0,007
27	0,6	0,8	13	72,17	50	0,62	0,0625	0,18	0,126	0,684	0,013
28	0,6	0,8	14	72,17	50	0,62	0,0625	0,19	0,136	0,722	0,014
29	0,6	0,8	14	63,81	35	0,89	0,0637	0,24	0,152	0,912	0,011
30	0,6	0,8	13	63,81	35	0,89	0,0637	0,22	0,141	0,836	0,01
31	0,6	0,8	11	89,89	95	0,326	0,0602	0,11	0,087	0,418	0,016
32	0,6	0,8	19	89,89	95	0,326	0,0602	0,19	0,15	0,722	0,028
33	0,6	0,8	19	84,07	95	0,326	0,0602	0,18	0,131	0,684	0,024
34	0,6	0,8	14	84,07	95	0,326	0,0602	0,13	0,097	0,494	0,018
35	0,6	0,8	8	77,74	50	0,62	0,0625	0,12	0,09	0,456	0,009
36	0,6	0,8	8	77,74	50	0,62	0,0625	0,12	0,09	0,456	0,009
37	0,5	0,87	4	10,57	4	7,74	0,095	0,08	0,01	0,304	0
38	0,5	0,87	4	10,57	4	7,74	0,095	0,08	0,01	0,304	0
39	0,5	0,87	4	10,57	4	7,74	0,095	0,08	0,01	0,304	0
40	0,8	0,6	4	5,32	4	7,74	0,095	0,06	0,003	0,228	0
41	0,8	0,6	6	5,32	4	7,74	0,095	0,09	0,004	0,342	0
42	0,8	0,6	5	5,32	4	7,74	0,095	0,08	0,003	0,304	0

Потери напряжения в кабелях, соединяющих СП и ШРА с КТП рассчитываются аналогично потерям в кабелях по формулам (3.16) - (3.19). Расчеты сведем в таблицу 3.16.

Таблица 3.16 – Расчет потерь в кабелях, питающих СП (вариант 1)

№ СП	соѕф	sinф	L, м	I _{pa6} , A	S, mm ²	r _{уд} , Ом/км	х _{уд} , Ом/км	ΔU, %	ΔP, κΒτ	ΔU, Β	ΔQ, квар
1	2	3	4	5	6	7	8	9	10	11	12
1	0,59	0,81	72	26,74	16	1,94	0,0675	1,05	0,3	3,99	0,01
2	0,61	0,79	60	91,02	95	0,326	0,0602	0,61	0,486	2,318	0,09
3	0,6	0,8	50	52,83	35	0,89	0,0637	0,7	0,373	2,66	0,027
4	0,6	0,8	40	39,56	35	0,89	0,0637	0,42	0,167	1,596	0,012
5	0,63	0,78	3	29,34	35	0,89	0,0637	0,02	0,007	0,076	0
6	0,61	0,79	22	88,05	50	0,62	0,0625	0,38	0,317	1,444	0,032

Результаты расчетов потерь в шинопроводах, представлены в таблице 3.17.

Таблица 3.17 – Расчет потерь в ШРА (вариант 2)

Шино- провод	соѕф	sinф	L, м	I _{paő} , A	r _{уд} , Ом/км	х _{уд} , Ом/км	ΔU, %	ΔР, кВт	Тип	ΔU,Β
1	2	3	4	5	6	7	8	9	10	11
ШРА-1	0,6	0,8	51	112,43	0,286	0,24	0,95	0,553	ШРА4-160-44-1У3	0,361
ШРА-2	0,62	0,78	51	147,03	0,286	0,24	1,246	0,946	ШРА4-160-44-1У3	0,473

3.3.5 Технико-экономическое сравнение вариантов

Для технико-экономического сравнения вариантов необходимо рассчитать капитальные затраты на сооружение электрической сети и затраты на ее эксплуатацию.

Экономическим критерием эффективности варианта является минимум приведенных затрат:

$$3 = E_{H} \cdot K + V, \tag{3.20}$$

где $E_H = 0,125$ — нормативный коэффициент экономической эффективности [18, с. 57];

К – единовременные капитальные затраты (капиталовложения);

И – ежегодные эксплуатационные издержки; ущерб от перерывов электроснабжения не считаем, так как неизвестна зависимость ущерба от качества электроэнергии.

Эксплуатационные издержки определяются:

$$\mathbf{H} = \mathbf{H}_{\mathbf{I}\mathbf{I}} + \mathbf{H}_{\Delta \mathbf{A}}.\tag{3.21}$$

Стоимость потерь электроэнергии определяется по формуле:

$$\mathcal{H}_{\Delta A} = \beta \cdot \Delta A, \tag{3.22}$$

где β – стоимость потерь 1 кВт·ч электроэнергии (см. ниже).

При расчетах используем укрупненные показатели.

Капитальные затраты на сооружение первого и второго вариантов складываются из затрат на:

Распределительные пункты и шинопроводы;

Кабели, питающие отдельные электроприемники, СП, ШРА;

Коммутационно-защитные аппараты на 0,4 кВ.

Стоимость распределительных силовых пунктов и шинопроводов (таблицы 3.18-3.19).

Таблица 3.18 – Расчет стоимости силовых пунктов (вариант 1)

Номер ШРА	I _p , A	Тип шинопровода	L, м	Цена, руб/сек (3 м)	Стоимость, руб
ШРА-1	112,43	ШРА4-160-44-1У3	51	5100	86700
ШРА-2	147,03	ШРА4-160-44-1У3	51	5100	86700
				ИТОГО	173400

Таблица 3.19 – Расчет стоимости силовых пунктов (вариант 2)

Номер СП	I _p , A	Марка СП	Номинальный ток СП, А	Количество присоединений СП	Стоимость, руб
СП-1	26,74	ПР8804-1008	40	8	6500
СП-2	91,02	ПР8804-1004	100	8	10000
СП-3	52,83	ПР8804-1006	63	8	8000
СП-4	39,56	ПР8804-1008	40	8	6500
СП-5	29,34	ПР8804-1008	40	8	6500
СП-6	88,05	ПР8804-1004	100	8	10000
		·		ИТОГО	47500

Расчет стоимости кабельных линий (таблица 3.20).

Стоимость кабельных линий определяется по выражению:

$$K_{\text{KJI}} = \Sigma K_{\text{KJI}i} \cdot L_i , \qquad (3.23)$$

где $K_{\kappa ni}$ – стоимость 1 м кабеля, L_i – длина кабеля.

Таблица 3.20 – Расчет стоимости кабелей

	Сечение		Цена,	Стоимость,	No	Сечение		Цена,	Стоимость,
№ п/п	кабеля	L, м	цена, руб./м	руб	п/п	кабеля	L, м	руб./м	руб
1	2	3	4	5	1	2	3	4	5 5
1	2	Вариант		3	1	Z	з Вариан		3
1	16	10	54	540	1	16	<u> Бариан</u> 10	54	540
2	16	6	54	324	2	16	10	54	540
3	16	5	54	270	3	16	8	54	432
4	10	2	37	74	4	10	5	37	185
5	10	6	37	222	5	10	9	37	333
6	6	12	29	348	6	6	16	29	464
7	10	10	37	370	7	10	14	37	518
8	10	3	37	111	8	10	6	37	222
9	10	2	37	74	9	10	5	37	185
10	4	2	21	42	10	4	5	21	105
11	4	2	21	42	11	4	5	21	105
12	4	11	21	231	12	4	15	21	315
13	4	6	21	126	13	4	9	21	189
14	4	13	21	273	14	4	17	21	357
15	4	3	21	63	15	4	6	21	126
16	4	3	21	63	16	4	7	21	147
17	4	12	21	252	17	4	16	21	
18	4	4	21	84	18	4	8	21	336 168
19		2	54		19	16	5	54	
	16	10	54	108	20	16	<u>5</u> 14	54	270
20	16	7	54	540					756
21	16		54	378	21	16	11	54	594
22	16	6		324	22	16	9	54	486
23	10	16 7	37	592	23 24	10	20	37	740
24 25	10		37	259		10 50	11	37	407
	50	10	185	1850	25		14	185	2590
26	50	9	185	370	26	50	6	185	1110
27	50		185	1665	27	50	13	185	2405
28	50	10	185	1850	28	50	14	185	2590
29	35	10	116	1160	29	35	14	116	1624
30	35	9 7	116	1044	30	35	13	116	1508
31	95		370	2590	31	95	11	370	4070
32	95	15	370	5550	32	95	19	370	7030
33	95	15	370	5550	33	95	19	370	7030
34	95 50	10	370 185	3700	34	95 50	14	370	5180
	50	4	185	740	35	50	8	185 185	1480 1480
36 37	50	1	21	740 21	36 37	4	4	21	84
38	4	1	21	21	38	4	4	21	84
38	4	1		21		4	4	21	84
			21		39				84
40	4	1	21	21	40	4	4	21	
41 42	4	3	21	63	41	4	6	21	126
42	4	•	21	21	42	4	5	21	105
CII 1		ели, питак 72		2000		 			1
СП-1	16		54	3888					
СП-2	95	60	370	22200					
СП-3	35	50	116	5800					
СП-4	35	40	116	4640					
СП-5	35	3	116	348					1
СП-6	50	22	185	4070					47104
				73633					47184

Стоимость автоматов по 1-му и 2-му варианту (таблица 3.21).

Таблица 3.21 – Стоимость автоматов

Место установки	Тип ав- томата	Номинальный ток, А	Цена ав- томата, руб.	Место установки	Тип ав- томата	Номинальный ток, А	Цена ав- томата, руб.
	Ba	риант 1			Ba	риант 2	
СП-1	BA 51-31	31,5	450				
СП-2	BA 51-35	160	1200				
СП-3	BA 51-31	63	870				
СП-4	BA 51-31	50	680				
СП-5	BA 51-31	40	680	ШРА-1	BA 51-35	160	1200
СП-6	BA 51-31	100	1200	ШРА-2	BA 51-35	250	
		ОЛОТИ	10160			ОЛОТИ	1200

Расчет стоимости капиталовложений:

$$K_{\text{BAP1}} = K_{\text{KJI}} + K_{\text{CII}} + K_{\text{ABTOMAT}} = 73,633 + 47,5 + 10,16 = 131,293$$
 тыс. руб. $K_{\text{BAP2}} = K_{\text{KJI}} + K_{\text{IIIPA}} + K_{\text{ABTOMAT}} = 47,184 + 173,4 + 1,2 = 221,784$ тыс. руб.

Издержки определяются по формуле:

$$\mathcal{U} = \frac{\mathcal{U}_{\%} \cdot \mathcal{K}}{100} + \Delta \mathbf{A} \cdot \mathbf{B}, \tag{3.14}$$

где $И_{\%}$ – процентное отчисление на амортизацию, ремонт и обслуживание, составляет в сумме 9,4% для силового электротехнического оборудования [1, табл.12.3, с. 535];

В – стоимость потерь одного киловатт в час электроэнергии (стоимость электроэнергии за 1 кВт-ч задается по среднему уровню тарифа, установленному Федеральной службой по тарифам: 3 руб./кВт.ч (Приказ Федеральной антимонопольной службы № 1060/17 от 06.11.2017 «О предельных уровнях тарифов на электрическую энергию (мощность) на 2018 год»).

Потери электроэнергии:

$$\Delta A = \Delta P \cdot \tau, \tag{3.15}$$

где т – время максимальных потерь, ч/год

$$\tau = (0.124 + T_{\rm M}/10000)^2 \cdot 8760, \tag{3.16}$$

где Т_м – время использования максимальной нагрузки, ч/год.

Потери энергии в распределительной сети определяются исходя из следующих условий: стройплощадка работает в две смены, следовательно, для

данного объекта $T_{\rm M} = 3600 \, \text{ч/год}$,

$$\tau = (0.124 + 3600/10000)^2 \cdot 8760 = 2052 \text{ ч/год.}$$

Для первого варианта:

а) потери мощности:

$$\Delta P_{\text{OBIIII}} = \Delta P_{\text{KAB.1YP}} + \Delta P_{\text{KAB.2YP}} = 3.34 \text{kBt}$$
.

б) потери энергии:

$$\Delta A_{\text{OBIIII}} = \tau \cdot \Delta P_{\text{OBIIII}} = 2052 \cdot 3,34 = 6854 \text{ kBt} \cdot \text{y}$$
 .

Для второго варианта:

а) потери мощности:

$$\Delta P_{\text{Obili2}} = \Delta P_{\text{Kablyp}} + \Delta P_{\text{Kab2yp}} + \Delta P_{\text{шин}} = 4{,}011~\text{kBt}$$
 .

б) потери энергии:

$$\Delta A_{OBIJI2} = \tau \cdot \Delta P_{OBIJI2} = 2052 \cdot 4,011 = 8231 \text{ kBt} \cdot \text{y}$$
.

Результирующие издержки:

$$U_1 = 0.094 \cdot 131293 + 6854 \cdot 3 = 32904$$
 руб/год. $U_2 = 0.094 \cdot 221784 + 8231 \cdot 3 = 45541$ руб/год.

Определяем приведенные затраты:

$$3_1 = 0.125 \cdot 131293 + 32904 = 49316$$
 руб/год. $3_2 = 0.125 \cdot 221784 + 45541 = 73264$ руб/год.

Расхождение по затратам:

$$3 = \frac{3_2 - 3_1}{3_2} \cdot 100\% = \frac{73264 - 49316}{73264} \cdot 100\% = 32,69\% > 5\%.$$

Расхождение между затратами составляет 32,69 > 5%, следовательно, варианты неравноценны, поэтому выбираем вариант №1.

3.4 Электротехнический расчет электрического освещения

Для светильников общего освещения применяется напряжение 220 В. Электроснабжение рабочего и аварийного освещения выполняется самостоятельными линиями от главного щита освещения и главного щита аварийного освещения, подключенных к шинам низкого напряжения подстанции. При этом электроэнергия от подстанции передаётся питающими линиями на групповые осветительные щитки. Питание источников света осуществляется от групповых щитков групповыми линиями.

Распределение светильников по фазам по длине групповой линии выполняется для снижения потерь мощности и напряжения в проводе, уменьшения стробоскопического эффекта и снижения ущерба при исчезновении напряжения в одной из фаз.

Задачей данного раздела является оптимальное распределение светильников по фазам, выбор осветительного щита и питающего кабеля. Лампы распределяются относительно фаз таким образом, чтобы суммарная нагрузка фазбыла равномерной. Нагрузку можно считать равномерной, если моменты нагрузок отличаются незначительно.

Произведем расчет для рабочего и аварийного освещения согласно методикам, представленным в [15, 18].

Момент осветительной нагрузки определяют по выражению:

$$M = \sum_{i} P_{i} \cdot l_{i}, \qquad (3.17)$$

где P_i – мощность лампы, кВт.

 l_{i} – расстояние от ИП до лампы, м.

$$\sum M_a \approx \sum M_B \approx \sum M_c.$$
 (3.18)

Такое размещение позволяет выравнивать нагрузку по фазам.

Произведем выбор сечения проводников осветительной сети. Выбор сечения осуществляется с учетом рекомендаций:

- должна обеспечиваться достаточная механическая прочность.
- прохождение тока нагрузки не должно вызвать перегрев проводников $I_{\text{доп}} \! \geq I_{\text{pa6}}.$

У источника света должен поддерживаться необходимый уровень напряжения.

Потери напряжения, %:

$$\Delta U = \frac{M_{\text{max}}}{K_c \cdot s},\tag{3.19}$$

где $K_c = 7,4$ — для сети 380/220 В при алюминиевых проводниках [18,

c. 273];

s – сечение проводника;

Расчетная нагрузка, Вт:

$$P_{p.o.} = P_{vcr} \cdot K_c \cdot K_{\Pi PA}, \qquad (3.20)$$

где $P_{\text{уст}}$ - установленная мощность ламп;

К_с - коэффициент спроса;

 $K_{\Pi PA}$ - коэффициент, учитывающий потери в пускорегулирующей аппаратуре.

Максимальный расчетный ток в трехфазной сети, А:

$$I_{po} = \frac{P_{po}}{\sqrt{3} \cdot U_{\pi} \cdot \cos \phi},\tag{3.21}$$

где $P_{p,o}$ – расчетная нагрузка;

 U_{π} – напряжение на лампах, В;

соѕφ – коэффициент мощности ламп.

3.5 Электротехнический расчет для рабочего освещения

В цехе имеется 2 ряда по 5 светильников с лампами ДРЛ мощностью 0,4 кВт. Распределим их по фазам.

Значения результирующих моментов по каждой фазе представлено в таблице 3.18. Условие (3.18) выполняется.

Выберем сечение по максимальному значению результирующего момента при допустимой потере напряжения $\Delta U_{\text{доп}}=2,5$ % [15, c. 343], т.е. при $U_{\text{min}\%}=97,5\%$:

$$s = \frac{M_{\text{max}}}{K_c \cdot \Delta U_{\text{доп}}}$$
 (3.22)

По формуле (3.22) рассчитываем сечение:

$$s = \frac{27.2}{7.4 \cdot 2.5} = 1.47 \text{ MM}^2.$$

Выбираем алюминиевый провод марки ABBГ 4x2,5 с сечением основной жилы s=2,5 мм 2 и допустимым током 19 A.

Рассчитываем фактическую потерю напряжения:

$$\begin{split} \Delta U = & \frac{M_{max}}{K_c \cdot s} = \frac{27.2}{7.4 \cdot 2.5} = 1,47 \ B. \\ \Delta U_{\%} = & \frac{\Delta U \cdot 100\%}{U_{_{HOM, \varphi}}} = \frac{1,47 \cdot 100\%}{220} = 0,39 \ \%. \end{split}$$

По формуле (3.20) находим расчетную нагрузку одной группы:

$$P_{p.o.} = (6.0,4).0,95.1,1 = 2,508 \text{ kBt.}$$

Находим расчетный ток:

$$I_{po} = \frac{2,508 \cdot 10^3}{\sqrt{3} \cdot 220 \cdot 0,57} = 11,57 \text{ A}.$$

Расчетный ток не превышает допустимый ток кабеля. Определим сечение кабеля от щита освещения (ЩО) до КТП. Расчетную нагрузку находим как:

Определим максимальный расчетный ток:

$$I_{po} = \frac{12,54 \cdot 10^3}{\sqrt{3} \cdot 380 \cdot 0.57} = 20,04 \text{ A}.$$

Выбираем алюминиевый провод марки ABBГ 4x4 с сечением основной жилы s=4 мм 2 и допустимым током 23 A.

Выбираем осветительный щиток ЩО-II-2A-25-6 с номинальным током $I_{\text{ном}} = 25 \text{ A}$, с присоединениями по 12,5 A.

Вводной автомат: ВА 47-29, $I_{\text{ном}} = 25 \text{ A}$;

Групповой автомат отходящей линии: ВА 47-29, $I_{\text{ном}} = 12,5 \text{ A}.$

Рассчитываем фактическую потерю напряжения в кабеле, питающем щиток:

$$\Delta U = \frac{62,48 + 60,56 + 62,16}{7,4 \cdot 6} = 4,17 \text{ B.}$$

$$\Delta U_{\%} = \frac{4,17 \cdot 100\%}{380} = 1,10 \text{ \%.}$$

Суммарная потеря напряжения:

 $\Delta U_{\scriptscriptstyle \Sigma} =$ 0,39 + 1,1 = 1,49 %, что допустимо.

Таблица 3.22 – Вычисление моментов осветительной нагрузки рабочего освещения

			Pacc	тояні	ие све	тилы		указа	анны		ером	до пе		светі	ильни		уппы	*	
				1	ı		2	_		3	ı	1	4	ı		5	ų]
№ группы	ревф	Расстояние от первого светильника группы до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м	Суммарная длина (плечо) от данного светильника до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м	Суммарная длина (плечо) от данного светильника до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м	Суммарная длина (плечо) от данного светильника до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м	Суммарная длина (плечо) от данного светильника до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м	Суммарная длина (плечо) от данного светильника до щитка, м		
1	A	12	1	8	8	2	8	16		8	0		8	0				14,4	62,48
	В			8	0		8	0	3	8	24	4	8	32				27,2	60,56
	С			8	0		8	0		8	0		8	0				4,8	62,16
2	A			8	0		8	0	3	8	24		8	0				11,6	
	В			8	0	2	8	16		8	0		8	0				8,4	
	C	5	1	8	8		8	0		8	0	4	8	32				18	
3	A	3		7,2	0		7,2	0		7,2	0	4	7,2	29		7,2	0	12,72	
	В			7,2	0	2	7,2	14	3	7,2	22		7,2	0		7,2	0	15,6	
	C		1	7,2	7,2		7,2	0		7,2	0		7,2	0	5	7,2	36	18,48	

Примечание. *Кратность расстояния - множитель, показывающий, сколько раз нужно умножить расстояние между светильниками в группе, чтобы получить полную длину плеча от данного светильника до щита. **Для удобства определения кратности расстояния первый светильник в группе не нумеруется.

3.6 Электротехнический расчет для аварийного освещения

Электротехнический расчет для аварийного освещения выполняем по аналогии с расчетом для рабочего освещения. В цехе имеется 2 ряда по 3 светильника со светодиодными лампами мощностью 0,045 кВт.

Значения результирующих моментов по каждой фазе представлено в таблице 3.23. Условие (3.18) выполняется.

Рассчитываем сечение:

$$s = \frac{2,016}{7,4 \cdot 2,5} = 0,11 \text{ MM}^2.$$

Выбираем алюминиевый провод марки ABBГ 4x2,5 с сечением основной жилы s=2,5 мм 2 и допустимым током 19 A.

Рассчитываем фактическую потерю напряжения:

$$\begin{split} \Delta U = & \frac{M_{max}}{K_c \cdot s} = \frac{2,016}{7,4 \cdot 2,5} = 0,11 \ B. \\ \Delta U_{\%} = & \frac{\Delta U \cdot 100\%}{U_{_{HOM, \Phi}}} = \frac{0,11 \cdot 100\%}{380} = 0,03 \ \%. \end{split}$$

По формуле (3.20) находим расчетную нагрузку одной группы:

$$P_{a.o.} = (3 \cdot 0.045) \cdot 1 \cdot 1 = 0.14 \text{ kBt.}$$

По формуле (3.21) находим расчетный ток:

$$I_{a o} = \frac{0.14 \cdot 10^3}{\sqrt{3} \cdot 220 \cdot 0.95} = 0.52 \text{ A}.$$

Расчетный ток не превышает допустимый ток кабеля. Определим сечение кабеля от щита освещения (ЩО) до КТП. Расчетную нагрузку находим как:

$$P_{a.o.} = (6 \cdot 0.045) \cdot 1 \cdot 1 = 0.28 \text{ kBt.}$$

Определим максимальный расчетный ток:

$$I_{a o} = \frac{0.28 \cdot 10^3}{\sqrt{3} \cdot 380 \cdot 0.95} = 0.45 \text{ A}.$$

Таблица 3.23 — Вычисление моментов осветительной нагрузки аварийного освещения

№ группы	Фаза	Расстояние от первого светильника группы до щитка, м	Кратность расстояния**	Расстояние между светильниками в группе, м 1 со	Суммарная длина (плечо) от данного светильника на в	Кратность расстояния**	Расстояние между светильниками в группе, м с мо	ф Оуммарная длина (плечо) от данного светильника до шитка, м	суммарный момент по фазам группы оол	Ма \approx Мв \approx Мс - результирующие (суммарные) момен- $\frac{1}{4}$ момен- \frac
1	A	16		14	0		14	0	0,72	2,331
	В		1	14	14	_	14	0	1,368	2,331
	С			14	0	2	14	29	2,016	2,331
2	A			14	0	2	14	29	1,611	·
	В		1	14	14		14	0	0,963	
	С	7		14	0		14	0	0,315	

Примечание. *Кратность расстояния - множитель, показывающий, сколько раз нужно умножить расстояние между светильниками в группе, чтобы получить полную длину плеча от данного светильника до щита. **Для удобства определения кратности расстояния первый светильник в группе не нумеруется.

Выбираем алюминиевый провод марки ABBГ 4x2,5 с сечением основной жилы s=4 мм 2 и допустимым током 23 A.

Выбираем осветительный щиток ОЩВ-3-2,5-6 с номинальным током $I_{\text{ном}} = 2,5$ A, с присоединениями по 1 A.

Вводной автомат: ВА 47-29, $I_{\text{ном}} = 2,5 \text{ A};$

Групповой автомат отходящей линии: ВА 47-29, $I_{\text{ном}} = 1 \text{ A}$.

Рассчитываем фактическую потерю напряжения в кабеле, питающем щиток:

$$\Delta U = \frac{2,331 + 2,331 + 2,331}{7,4 \cdot 2,5} = 0,38 \text{ B}.$$

$$\Delta U_{\%} = \frac{0.82 \cdot 100\%}{380} = 0.216 \%.$$

Суммарная потеря напряжения:

$$\Delta U_{\Sigma} = 0.03 + 0.38 = 0.41$$
 %, что допустимо.

3.5 Расчет токов короткого замыкания и проверка основного оборудования сети

Рассчитаем ток трехфазного короткого замыкания (КЗ) с учетом сопротивления внешней сети (системы и питающей линии). К схеме замещения добавляется сопротивление внешней сети (рисунок 3.7), которое необходимо привести к напряжению точки КЗ, т. е. 0,4 кВ.

Сопротивления линии (между внешней сетью (системой) и трансформатором):

$$x_{_{I\!I}} = x_{_{0}}\ell_{_{I\!I}} = 0,113 \cdot 1,5 = 0,17 \ O$$
м.
 $r_{_{I\!I}} = r_{_{0}}\ell_{_{I\!I}} = 1,94 \cdot 1,5 = 2,91 \ O$ м.

Т.к. мощность трансформаторов ПС энергосистемы неизвестна, то сопротивление электрической системы можно определить согласно [2, п. 2.8]. Для этого зная тип выключателя, который установлен для защиты отходящей линии от ПС энергосистемы, от которой питается рассматриваемый объект: ВВЭ-М-10-12,5/630У2. По каталогу [17] определяем ток отключения $I_{\text{откл}} = 12,5$ кА для этого выключателя. Сопротивление системы определяется по формуле [12]:

$$x_c = \frac{U_{\text{cp.ном}}^2}{S_{\text{c}}} = \frac{10.5^2}{227.3} = 0,5 \text{ OM},$$
 где $S_c = \sqrt{3} \cdot I_{\text{ном откл.}} \cdot U_{\text{cp.ном}} = \sqrt{3} \cdot 12,5 \cdot 10,5 = 227,3 \text{ MBA}.$

Рассчитаем результирующее сопротивление и ток КЗ в точке К1:

$$\begin{split} x_{\Sigma K1} &= x_C = 0,5 \text{ Om.} \\ I_{K1} &= \frac{U_{cp.\text{ном}}}{\sqrt{3} \cdot x_{\Sigma K1}} = \frac{10,5}{\sqrt{3} \cdot 0,5} = 12 \text{ кA.} \\ i_{V\!J\!J \text{ K1}} &= \sqrt{2} \cdot k_{V\!J\!J} \cdot I_{K1}^{(3)} = \sqrt{2} \cdot 1,8 \cdot 12 = 30,55 \text{ кA.} \end{split}$$

где $k_{y_{J\!\!\!/}} = 1,8$ – при КЗ в сетях ВН, где активное сопротивление не оказывает существенного влияния [21].

Рассчитаем результирующее сопротивление и ток КЗ в точке К2:

$$\begin{split} x_{\Sigma K2} &= x_C + x_{JI} = 0.5 + 0.17 = 0.67 \text{ Om.} \\ r_{\Sigma K2} &= r_{JI} = 2.91 \text{ Om.} \\ I_{K2} &= \frac{U_{cp.\text{HOM}}}{\sqrt{3} \cdot \sqrt{x_{\Sigma K2}^2 + r_{\Sigma K2}^2}} = \frac{10.5}{\sqrt{3} \cdot \sqrt{0.67^2 + 2.91^2}} = 2,03 \text{ KA.} \\ i_{VJI \text{ K2}} &= \sqrt{2} \cdot k_{VJI} \cdot I_{K2}^{(3)} = \sqrt{2} \cdot 1.8 \cdot 2.03 = 5.17 \text{ KA.} \end{split}$$

При расчете сопротивлений приведение к одной ступени напряжения производится исходя из существующей шкалы средних номинальных напряжений. Пересчет сопротивлений производится по выражению [12; 18, с. 167]:

$$X_{K} = X_{\text{HOM}} \cdot \left(\frac{U_{\text{cp. K}}}{U_{\text{cp. HOM}}}\right)^{2}, \tag{3.23}$$

где X_{κ} – сопротивление (Ом), приведенное к ступени напряжения $U_{\text{ср. }\kappa}$;

 $X_{\scriptscriptstyle{\mathrm{HOM}}}-$ сопротивление (Ом), заданное при напряжении $U_{\scriptscriptstyle{\mathrm{Cp.\,HOM}}}$;

 $U_{\rm cp.\,\kappa}$ — среднее эксплуатационное напряжение ступени короткого замыкания, к которому пересчитываются все сопротивления сети, кВ;

 $U_{\rm cp.\ hom}$ — среднее эксплуатационное напряжение на ступени номинального напряжения элемента.

Приведенное сопротивление системы:

$$x_{\rm C} = \frac{U_{\rm hom}^2}{S_{\rm c}} \cdot \left(\frac{U_{\rm cp.\ K}}{U_{\rm cp.\ hom}}\right)^2 = \frac{10000^2}{227, 3 \cdot 10^6} \cdot 10^3 \cdot \left(\frac{0.4}{10.5}\right)^2 = 0,64 \text{ MOM},$$

где $S_{\rm c}$ – мощность системы.

Приведенные сопротивления кабельной линии (между внешней сетью (системой) и трансформатором):

$$x_{_{I\!I}} = x_{_{\mathit{yo}\!I\!I}} \ell_{_{I\!I}} \cdot \left(\frac{U_{_{\mathrm{cp.\ K}}}}{U_{_{\mathrm{cp.\ HoM}}}}\right)^2 = 0,113\cdot 1,5\cdot 10^3\cdot \left(\frac{0,4}{10,5}\right)^2 = 0,25\ \mathit{mOm}.$$

$$r_{II} = r_{y\partial II} \ell_{II} \left(\frac{U_{\text{cp. K}}}{U_{\text{cp. Hom}}} \right)^2 = 1,94 \cdot 1,5 \cdot 10^3 \cdot \left(\frac{0,4}{10,5} \right)^2 = 4,22 \text{ MOM}.$$

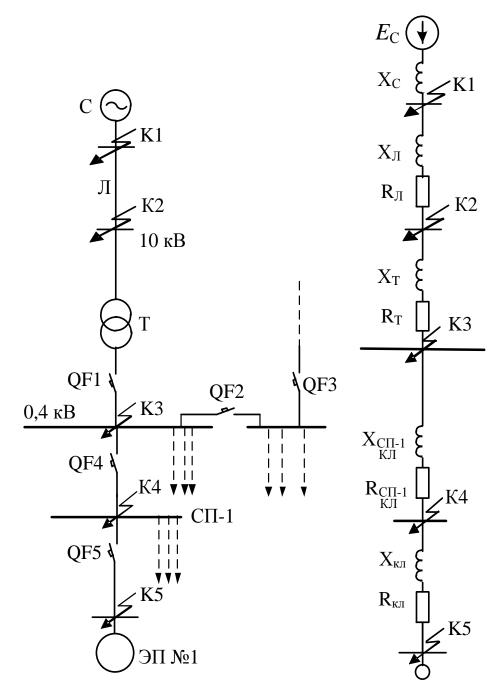


Рисунок 3.7 – Расчетные схемы

По [18, с. 167] при расчете токов КЗ в сетях рекомендуется учитывать сопротивление следующим образом: 0,02 Ом — для первичных СП, а также на зажимах аппаратов, питаемых радиальными линиями от щитов подстанций или главных магистралей; 0,025 Ом — для вторичных СП, а также на зажимах аппаратов, питаемых от первичных СП.

Определяем сопротивление трансформатора:

$$r_{mp} = \frac{\Delta P_{\text{\tiny K.3.}}}{S_{\text{\tiny HOM.mp.}}} \cdot \frac{U_{\text{\tiny HOM.}}^2}{S_{\text{\tiny HOM.mp.}}} \cdot 10^6 = \frac{1,97}{100} \cdot \frac{0,4^2}{100} \cdot 10^6 = 31,52 \text{ mOm};$$

$$x_{mp} = \sqrt{\left(\frac{U_{\text{\tiny K}}}{100}\right)^2 - \left(\frac{\Delta P_{\text{\tiny K.3.}}}{S_{\text{\tiny HOM.mp.}}}\right)^2} \cdot \frac{U_{\text{\tiny HOM.}}^2}{S_{\text{\tiny HOM.mp.}}} \cdot 10^6 = \sqrt{\left(\frac{4,5}{100}\right)^2 - \left(\frac{1,97}{100}\right)^2} \cdot \frac{0,4^2}{100} \cdot 10^6 = 64,73 \text{ mOm}.$$

Рассчитаем сопротивление и ток K3 в точке K3 на вводе низшего напряжения подстанции:

$$x_{\Sigma K3} = x_C + x_M + x_{mp} = 0,64 + 0,25 + 64,73 = 65,62$$
 MOM.

В расчет вводим добавочное сопротивление, которое на шинах подстанции составляет 15 мОм:

$$\begin{split} r_{\Sigma K3} &= r_{mp} + r_{Л} + r_{\partial o \delta} = 31,52 + 4,22 + 15 = 50,74 \text{ мОм.} \\ \frac{x_{\Sigma K3}}{r_{\Sigma K3}} &= 1,02 \text{ , следовательно, } K_{y \partial} = 1,0 \text{ [18, c. 143].} \\ I_{K3} &= \frac{U_{cp.\text{ном}}}{\sqrt{3} \cdot \sqrt{x_{\Sigma K3}^2 + r_{\Sigma K3}^2}} = \frac{400}{\sqrt{3} \cdot \sqrt{65,62^2 + 50,74^2}} = 2,78 \text{ кA.} \\ i_{VII,K3} &= \sqrt{2} \cdot k_{VII} \cdot I_{K3}^{(3)} = \sqrt{2} \cdot 1,0 \cdot 2,78 = 3,93 \text{ kA.} \end{split}$$

Рассчитаем ток КЗ в точке К4.

$$\begin{split} x_{\Sigma K4} &= x_{\Sigma K3} + x_{\text{КЛ СП-1}} \cdot l = 65,62 + 0,0675 \cdot 72 = 70,48 \text{ мОм,} \\ r_{\Sigma K4} &= r_{\Sigma K3} + r_{\text{КЛ СП-1}} \cdot l + r_{\partial o \delta \text{ перв}} = 50,74 + 1,94 \cdot 72 + 20 = 210,42 \text{ мОм.} \\ \frac{x_{\Sigma K4}}{r_{\Sigma K4}} &< 1,0 \text{, следовательно } K_{y \partial} = 1,0 \text{ [18, c. 168].} \\ I_{K4} &= \frac{U_{cp.\text{ном}}}{\sqrt{3} \cdot \sqrt{x_{\Sigma K4}^2 + r_{\Sigma K4}^2}} = \frac{400}{\sqrt{3} \cdot \sqrt{70,48^2 + 210,42^2}} = 1,041 \text{ кA,} \\ i_{VJI \text{ K4}} &= \sqrt{2} \cdot k_{VJI} \cdot I_{K4}^{(3)} = \sqrt{2} \cdot 1,0 \cdot 1,041 = 1,472 \text{ кA.} \end{split}$$

Рассчитаем ток КЗ в точке К5.

$$\begin{split} x_{\Sigma K5} &= x_{\Sigma K4} + x_{\text{КЛ уд}} \cdot l = 70,48 + 0,0675*10 = 71,155 \text{ мОм}\,, \\ r_{\Sigma K5} &= r_{\Sigma K4} + r_{\text{КЛ уд}} \cdot l + r_{\text{доб втор}} = 210,42 + 1,94 \cdot 10 + 25 = 254,82 \text{ мОм}\,, \\ \frac{x_{\Sigma K5}}{r_{\Sigma K5}} &< 0,5 \text{ , следовательно } K_{\text{уд}} = 1 \text{ [18, c. 168],} \\ I_{K5} &= \frac{U_{\text{ср.ном}}}{\sqrt{3} \cdot \sqrt{x_{\Sigma K5}^2 + r_{\Sigma K5}^2}} = \frac{400}{\sqrt{3} \cdot \sqrt{71,155^2 + 254,82^2}} = 0,873 \text{ кA}\,, \\ i_{\text{VJI K5}} &= \sqrt{2} \cdot k_{\text{VJI}} \cdot I_{K5}^{(3)} = \sqrt{2} \cdot 1 \cdot 0,873 = 1,235 \text{ кA}\,. \end{split}$$

Для остальных точек расчет аналогичен (таблица 3.24).

Таблица 3.24 – Расчет токов короткого замыкания

Точка	Каб	ель	между СП и	Ri,	Xi,	L,	r ₀ ,	x ₀ ,	Точка	Р кл,	Хкл,	Rдоб.,				Ікз,		іуд,
КЗ	электр	опр	риемником №:	мОм	мОм	M	Ом/км	Ом/км	КЗ	мОм	мОм	мОм	R, мОм	Х, мОм	Z, мОм	кА	Ку	кА
1			2	3	4	5	6	7	1	8	9	10	11	12	13	14	15	16
			Шины НН															
К4	СП-1	-	КТП	50,74	65,62	72	1,94	0,0675	К4	139,68	4,86	20	210,42	70,48	221,91	1,041	1	1,472
К5	СП-1	-	1	210,42	70,48	10	1,94	0,0675	К5	19,4	0,675	25	254,82	71,155	264,568	0,873	1	1,235
К6	СП-1	-	7	210,42	70,48	10	3,1	0,073	К6	31	0,73	25	266,42	71,21	275,773	0,837	1	1,184
К7	СП-1	-	14	210,42	70,48	13	7,74	0,095	К7	100,62	1,235	25	336,04	71,715	343,607	0,672	1	0,95
К8	СП-1	-	4	210,42	70,48	2	3,1	0,073	К8	6,2	0,146	25	241,62	70,626	251,731	0,917	1	1,297
К9	СП-1	-	10	210,42	70,48	2	7,74	0,095	К9	15,48	0,19	25	250,9	70,67	260,663	0,886	1	1,253
K10	СП-1	-	13	210,42	70,48	6	7,74	0,095	K10	46,44	0,57	25	281,86	71,05	290,677	0,794	1	1,123
К11	СП-1		37	210,42	70,48	1	7,74	0,095	К11	7,74	0,095	25	243,16	70,575	253,195	0,912	1	1,29
			Шины НН															
К12	СП-2	-	КТП	50,74	65,62	60	0,326	0,0602	К12	19,56	3,612	20	90,3	69,232	113,786	2,03	1	2,871
К13	СП-2	-	20	90,3	69,232	10	1,94	0,0675	К13	19,4	0,675	25	134,7	69,907	151,76	1,522	1	2,152
К14	СП-2	-	26	90,3	69,232	2	0,62	0,0625	К14	1,24	0,125	25	116,54	69,357	135,617	1,703	1	2,408
K15	СП-2	-	32	90,3	69,232	15	0,326	0,0602	K15	4,89	0,903	25	120,19	70,135	139,157	1,66	1	2,348
К16	СП-2	-	19	90,3	69,232	2	1,94	0,0675	K16	3,88	0,135	25	119,18	69,367	137,897	1,675	1	2,369
K17	СП-2	-	25	90,3	69,232	10	0,62	0,0625	K17	6,2	0,625	25	121,5	69,857	140,151	1,648	1	2,331
К18	СП-2	-	31	90,3	69,232	7	0,326	0,0602	К18	2,282	0,4214	25	117,582	69,6534	136,664	1,69	1	2,39
К19	СП-2		40	90,3	69,232	1	7,74	0,095	К19	7,74	0,095	25	123,04	69,327	141,227	1,635	1	2,312
			Шины НН															
К20	СП-3	-	КТП	50,74	65,62	50	0,89	0,0637	К20	44,5	3,185	20	115,24	68,805	134,218	1,721	1	2,434
К21	СП-3	-	5	115,24	68,805	6	3,1	0,073	К21	18,6	0,438	25	158,84	69,243	173,276	1,333	1	1,885
К22	СП-3	-	11	115,24	68,805	2	7,74	0,095	К22	15,48	0,19	25	155,72	68,995	170,32	1,356	1	1,918
К23	СП-3	-	15	115,24	68,805	3	7,74	0,095	К23	23,22	0,285	25	163,46	69,09	177,462	1,301	1	1,84
К24	СП-3	-	21	115,24	68,805	7	1,94	0,0675	К24	13,58	0,4725	25	153,82	69,2775	168,701	1,369	1	1,936
К25	СП-3	-	27	115,24	68,805	9	0,62	0,0625	К25	5,58	0,5625	25	145,82	69,3675	161,479	1,43	1	2,022
К26	СП-3	-	33	115,24	68,805	15	0,326	0,0602	К26	4,89	0,903	25	145,13	69,708	161,003	1,434	1	2,028
			Шины НН															
К27	СП-4	-	КТП	50,74	65,62	40	0,89	0,0637	К27	35,6	2,548	20	106,34	68,168	126,313	1,828	1	2,585
К28	СП-4	-	38	106,34	68,168	1	7,74	0,095	K28	7,74	0,095	25	139,08	68,263	154,929	1,491	1	2,109

Окончание таблицы 3.24

1			2	3	4	5	6	7	1	8	9	10	11	12	13	14	15	16
К29	СП-4	-	2	106,34	68,168	6	1,94	0,0675	К29	11,64	0,405	25	142,98	68,573	158,573	1,456	1	2,059
К30	СП-4	-	8	106,34	68,168	3	3,1	0,073	К30	9,3	0,219	25	140,64	68,387	156,385	1,477	1	2,089
К31	СП-4	-	16	106,34	68,168	3	7,74	0,095	K31	23,22	0,285	25	154,56	68,453	169,04	1,366	1	1,932
К32	СП-4	-	22	106,34	68,168	6	1,94	0,0675	К32	11,64	0,405	25	142,98	68,573	158,573	1,456	1	2,059
К33	СП-4	-	28	106,34	68,168	10	0,62	0,0625	К33	6,2	0,625	25	137,54	68,793	153,785	1,502	1	2,124
К34	СП-5	_	Шины НН КТП	50,74	65,62	3	0,89	0,0637	К34	2,67	0,1911	20	73,41	65,8111	98,591	2,342	1	3,312
К35	СП-5	-	3	73,41	65,8111	5	1,94	0,0675	К35	9,7	0,3375	25	108,11	66,1486	126,742	1,822	1	2,577
К36	СП-5	-	9	73,41	65,8111	2	3,1	0,073	К36	6,2	0,146	25	104,61	65,9571	123,667	1,867	1	2,64
К37	СП-5	-	18	73,41	65,8111	4	7,74	0,095	К37	30,96	0,38	25	129,37	66,1911	145,32	1,589	1	2,247
К38	СП-5	-	24	73,41	65,8111	7	3,1	0,073	К38	21,7	0,511	25	120,11	66,3221	137,204	1,683	1	2,38
К39	СП-5	-	6	73,41	65,8111	12	5,17	0,09	К39	62,04	1,08	25	160,45	66,8911	173,835	1,329	1	1,879
К40	СП-5	-	12	73,41	65,8111	11	7,74	0,095	К40	85,14	1,045	25	183,55	66,8561	195,347	1,182	1	1,672
К41	СП-5		17	73,41	65,8111	12	7,74	0,095	К41	92,88	1,14	25	191,29	66,9511	202,668	1,139	1	1,611
К42	СП-5		42	73,41	65,8111	1	7,74	0,095	K42	7,74	0,095	25	106,15	65,9061	124,946	1,848	1	2,613
К43	СП-6	-	Шины НН КТП	50,74	65,62	22	0,62	0,0625	К43	13,64	1,375	20	84,38	66,995	107,742	2,143	1	3,031
К44	СП-6	-	30	84,38	66,995	9	0,89	0,0637	K44	8,01	0,5733	25	117,39	67,5683	135,447	1,705	1	2,411
К45	СП-6	-	36	84,38	66,995	4	0,62	0,0625	K45	2,48	0,25	25	111,86	67,245	130,516	1,769	1	2,502
К46	СП-6	-	23	84,38	66,995	16	3,1	0,073	К46	49,6	1,168	25	158,98	68,163	172,976	1,335	1	1,888
К47	СП-6	-	29	84,38	66,995	10	0,89	0,0637	К47	8,9	0,637	25	118,28	67,632	136,251	1,695	1	2,397
К48	СП-6	-	35	84,38	66,995	4	0,62	0,0625	К48	2,48	0,25	25	111,86	67,245	130,516	1,769	1	2,502
К49	СП-6	-	39	84,38	66,995	1	7,74	0,095	К49	7,74	0,095	25	117,12	67,09	134,975	1,711	1	2,42
К50	СП-6		34	84,38	66,995	10	0,326	0,0602	K50	3,26	0,602	25	112,64	67,597	131,366	1,758	1	2,486
К51	СП-6		41	84,38	66,995	3	7,74	0,095	K51	23,22	0,285	25	132,6	67,28	148,692	1,553	1	2,196

Произведем проверку защитных аппаратов сети напряжением ниже 1000 В на отключающую способность.

Проверка на отключающую способность осуществляется по выражению:

$$I_{\text{ОТКЛНОМ}} \ge I_{\text{КЗМАХ}}.$$
 (3.24)

Таблица 3.25 – Проверка автоматических выключателей

Место уста- новки (СП или № ЭП)	Тип автоматического выключа- теля	Предельная отключаю- щая способность, кА	Номер точки к.з.	Ікз ⁽³⁾ , кА
1	2	3	4	5
Вводной авто- мат QF1, QF3	BA 51-35	15	К3	2,78
Секционный автомат QF2	BA 51-35	15	К3	2,78
СП-1	BA 51-31	6	К4	1,041
1	BA 51-31	6	К5	0,873
7	BA 51-31	6	К6	0,837
14	BA 51-25	3	К7	0,672
4	BA 51-31	6	К8	0,917
10	BA 51-25	3	К9	0,886
13	BA 51-25	3	K10	0,794
37	BA 51-25	3	K11	0,912
СП-2	BA 51-35	15	K12	2,03
20	BA 51-31	6	K13	1,522
26	BA 51-31	7	K14	1,703
32	BA 51-35	15	K15	1,66
19	BA 51-31	6	K16	1,675
25	BA 51-31	7	K17	1,648
31	BA 51-35	15	K18	1,69
40	BA 51-25	2	К19	1,635
СП-3	BA 51-31	6	К20	1,721
5	BA 51-31	6	K21	1,333
11	BA 51-25	3	К22	1,356
15	BA 51-25	2,5	К23	1,301
21	BA 51-31	6	К24	1,369
27	BA 51-31	7	К25	1,43
33	BA 51-35	15	К26	1,434
СП-4	BA 51-31	6	К27	1,828
38	BA 51-25	3	К28	1,491
2	BA 51-31	6	К29	1,456
8	BA 51-31	6	K30	1,477
16	BA 51-25	2,5	К31	1,366
22	BA 51-31	6	К32	1,456
28	BA 51-31	7	К33	1,502
СП-5	BA 51-31	6	К34	2,342
3	BA 51-31	6	K35	1,822

Окончание таблицы 3.25

1	2	3	4	5
9	BA 51-31	6	К36	1,867
18	BA 51-25	2,5	К37	1,589
24	BA 51-31	6	К38	1,683
6	BA 51-25	3	К39	1,329
12	BA 51-25	3	К40	1,182
17	BA 51-25	2,5	К41	1,139
42	BA 51-25	2	К42	1,848
СП-6	BA 51-31	7	К43	2,143
30	BA 51-31	6	К44	1,705
36	BA 51-31	7	К45	1,769
23	BA 51-31	6	К46	1,335
29	BA 51-31	6	К47	1,695
35	BA 51-31	7	К48	1,769
39	BA 51-25	3	К49	1,711
34	BA 51-35	15	K50	1,758
41	BA 51-25	2	K51	1,553

Так как $I_{OTKJHOM} > I_K^{(3)}$, кА, то все автоматы выбраны правильно, и подходят по отключающей способности к токам КЗ.

3.6 Анализ качества напряжения цеховой сети и расчет отклонения напряжения для характерных электроприемников

Наиболее наглядно анализ качества напряжения отражается эпюрой отклонения напряжения. Общее отклонение напряжения характеризуется исходной схемой электроснабжения. Величина напряжения на источнике питания за счет встречного регулирования напряжения в зависимости от режима работы следующая:

в максимальном режиме 1,05 U_{НОМ}

в минимальном режиме Uном

На цеховых трансформаторных подстанциях устанавливают трансформаторы, которые имеют устройства ПБВ с пределом регулирования $\pm 2x2,5\%$.

Расчет будем производить:

- 1. Для самого мощного электроприемника (ЭП № 31, от СП-2);
- 2. Для самого удаленного (ЭП № 1, от СП-1).

Величина отклонения напряжения рассчитывается по формуле:

$$V = \frac{(U_{\text{M}\Pi} - \Delta U_{\text{yчастка}}) - U_{\text{H}}}{U_{\text{H}}} \cdot 100\%. \tag{3.25}$$

Потери в линии определяются выражением:

$$\Delta U_{\pi} = \sqrt{3} \cdot I_{\text{pa6}} \cdot L \cdot (r_0 \cdot \cos \varphi + x_0 \cdot \sin \varphi). \tag{3.26}$$

Потери в трансформаторе КТП определяются выражением:

$$\Delta U_{\rm Tp} = \beta \cdot (U_a \cdot \cos \varphi + U_p \cdot \sin \varphi),$$

где β — коэффициент загрузки, U_a , U_p —соответственно активная и реактивная составляющие напряжение короткого замыкания:

$$U_p = \sqrt{U_K^2 - U_a^2},\tag{3.27}$$

$$U_a = \Delta P_{K3} / S_{\text{HOM,TD}} \cdot 100. \tag{3.28}$$

Оценка качества напряжения для самого мощного электроприемника. При расчетах используем данные из предыдущих расчетов.

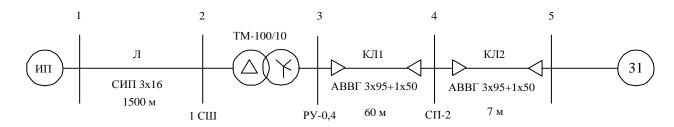


Рисунок 3.8 – Расчетная схема

Максимальный режим.

 $U_{\text{ном}} = 10500 \text{ B} - \text{напряжение ИП в максимальном режиме.}$

Максимальный режим.

Потери напряжения в высоковольтной линии Л (самонесущий изолированный провод СИП 3x16 с допустимым током нагрузки 70 A):

$$\Delta U = \frac{\sqrt{3} \cdot I_{p} \cdot l \cdot (r_{yx} \cdot \cos \varphi + x_{yx} \cdot \sin \varphi) \cdot 100\%}{U_{yyy}}.$$

где l — длина линии, км; $\mathbf{r}_{yд}$, $\mathbf{x}_{yд}$ — удельное активное и реактивное сопротивление провода, Ом/км; $\mathbf{U}_{\text{ном}}$ — номинальное напряжение сети, В; \mathbf{I}_{p} — расчетный ток электроприемника, А.

Удельное активное и индуктивное сопротивления провода при напряжении 10 кВ определяются согласно [12].

Таким образом, потери напряжения в питающей линии:

$$\Delta U = \frac{\sqrt{3} \cdot 3,95 \cdot 1,5 \cdot (0,61 \cdot 1,94 + 0,113 \cdot 0,79) \cdot 100\%}{10000} = 0,13\%.$$

Отклонение напряжения относительно номинального в линии Л:

$$V_2 = 5 - 0.13 = 4.87 \%.$$

 $\Delta U_{\rm JI} = 0.13 * 10000/100 = 13 B.$

тогда напряжение в конце линии Л составит:

$$U_2 = 10500 - 13 = 10487 \text{ B}.$$

Вычислим потери напряжения в трансформаторе.

$$\begin{split} &\Delta P_{\text{к.3.}} = 1,97 \text{ kBt; } S_{\text{hom.tp.}} = 100 \text{ kBA.} \\ &U_a = \Delta P_{\text{к.3.}} / S_{\text{hom.tp.}} \cdot 100 = 1,97 / 100 \cdot 100 = 1,97 \% \\ &U_{\text{k}} = 4,5\%, \\ &U_p = \sqrt{U_{\text{k}}^2 - U_a^2} = \sqrt{4,5^2 - 1,97^2} = 4,05 \%. \end{split}$$

Мощность третьего уровня:

$$S_{III} = 128,32 \text{ kBA}.$$

Коэффициент загрузки трансформатора:

$$\begin{split} \beta &= \frac{\mathrm{S_{III}}}{2\mathrm{S_{HOM.Tp}}} = \frac{128,32}{2 \cdot 1000} = 0,64. \\ \Delta U_{\mathrm{Tp}} &= \beta \cdot \left(U_a \cdot \cos \varphi + U_p \cdot \sin \varphi \right) = \\ &= 0,64 \cdot (1,97 \cdot 0,61 + 4,05 \cdot 0,79) = 2,82 \%. \\ \Delta U_{\mathrm{Tp1}} &= \Delta U_{\mathrm{Tp}} \cdot \frac{\mathrm{U_{HOM}}}{100} = 2,82 \cdot \frac{10000}{100} = 282 \ \mathrm{B}. \end{split}$$

Напряжение на шинах НН трансформатора, приведенное к ВН:

$$U_3 = U_2 - \Delta U_{\text{Tp1}} = 10487 - 282 = 10205 \text{ B}.$$

Коэффициент трансформации:

$$\begin{split} \mathbf{K}_{\mathrm{Tp}} &= \frac{U_{\mathrm{HH}}}{U_{\mathrm{BH}}}, \\ \mathbf{K}_{\mathrm{Tp}} &= \frac{380}{10000} = 0,\!038. \\ U_{\mathrm{2HH}} &= U_2 \cdot \mathbf{K}_{\mathrm{Tp}}, \\ U_{\mathrm{2HH}} &= 10205 \cdot 0,\!038 = 387,\!79 \; \mathrm{B}. \end{split}$$

Отклонение напряжения относительно номинального:

$$V_3 = \frac{U_{2\text{HH}} - U_{\text{HOM HH}}}{U_{\text{HOM HH}}} \cdot 100 = \frac{387,79 - 380}{380} \cdot 100 = 2,05 \%.$$

Потеря напряжения в линии КЛ1, соединяющем РУ-0,4 и СП-2:

$$\Delta U_{3-4} = 2,32 \text{ B}.$$

Напряжение в конце кабеля КЛ1, у СП-2:

$$U_4 = U_{2HH} - \Delta U_{3-4} = 387,79 - 2,32 = 385,47 \text{ B}.$$

Отклонение напряжения в конце кабеля относительно номинального:

$$V_4 = \frac{385,47 - 380}{380} \cdot 100 = 1,44 \%.$$

Потери напряжения в линии КЛ2 от СП-2 до ЭП №31:

$$\Delta U_{4-5} = 0.27 \text{ B}.$$

Напряжение в месте присоединения линии КЛ2, питающего ЭП №31:

$$U_5 = U_4 - \Delta U_{4-5} = 385,47 - 0,27 = 385,2 \text{ B}.$$

Отклонение напряжения в конце кабеля относительно номинального:

$$V_5 = \frac{385,2 - 380}{380} \cdot 100 = 1,37 \%.$$

1,37% < 10%. Условие выполняется, потери допустимы.

Расчеты для минимального и послеаварийного режимов для самого мощного электроприемника аналогичны (таблица 3.26-3.28). Нагрузка в минимальном режиме принята равной 70% от нагрузки максимального режима, послеаварийный режим подразумевает выход из строя одного из трансформаторов. Все необходимые параметры для расчета представлены в таблице 3.26-3.28.

Оценка качества напряжения для самого удаленного электроприемника. При расчетах используем данные из предыдущих расчетов.

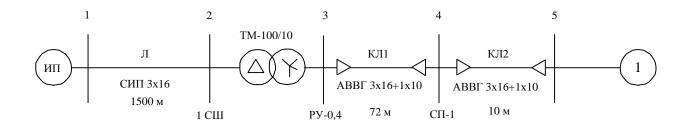


Рисунок 3.9 – Расчетная схема

Расчеты для трех режимов для самого удаленного электроприемника аналогичны (таблица 3.29-3.31). Нагрузка в минимальном режиме принята равной 70% от нагрузки максимального режима, послеаварийный режим подразумевает выход из строя одного из трансформаторов.

Все необходимые параметры для расчета представлены в таблице 3.29-3.31.

Таблица 3.26 – Анализ качества напряжения (расчет отклонений напряжения) для самого мощного электроприемника (максимальный режим)

Участок	cosφ	sinφ	l, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, B	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,113	3,95				0,13	13	10487		4,87
Участок	cos (ф)	sin (ф)	Кз(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up,	ΔU, %	ΔU, B	Uвн, В	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	0,64	1,97	64,16	100	1,97	4,5	4,05	2,82	282	10205	387,79	2,05
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, B	U, B		
3-4	0,61	0,79	91,02	0,06	0,326	0,0602				0,61	2,32	385,47		1,44
4-5	0,6	0,8	89,89	0,007	0,326	0,0602				0,07	0,27	385,2		1,37

Таблица 3.27 – Анализ качества напряжения (расчет отклонений напряжения) для самого мощного электроприемника (минимальный режим)

Участок	cosφ	sinφ	l, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, B	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,4	2,765				0,091	9,56	9990,44		-0,091
Участок	cos (ф)	sin (φ)	Кз(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up, %	ΔU, %	ΔU, B	Uвн, B	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	0,45	1,97	44,91	100	1,97	4,5	4,05	1,98	198	9792,44	372,11	-2,08
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, Β	U, B		
3-4	0,61	0,79	91,02	0,06	0,326	0,0602				0,427	1,624	369,79		-2,69
4-5	0,6	0,8	89,89	0,007	0,326	0,0602				0,049	1,189	369,52		-2,76

В минимальном режиме потери в кабелях, питающих рассматриваемый электроприемник принимаются такими же, как и в максимальном режиме. Т.е.

в минимальном режиме подразумевается отключение части нагрузки, не связанной с данным рассматриваемым электроприемником.

Таблица 3.28 – Анализ качества напряжения (расчет отклонений напряжения) для самого мощного электроприемника (послеаварийный режим)

Участок	cosφ	sinφ	l, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, B	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,4	7,9				0,26	27,3	10472,7		4,74
Участок	cos (ф)	sin (ф)	Кз(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up, %	ΔU, %	ΔU, B	Uвн, B	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	1,28	1,97	128,32	100	1,97	4,5	4,05	5,63	563	9909,7	376,57	-0,9
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, B	U, B		
3-4	0,61	0,79	91,02	0,06	0,326	0,0602				0,61	2,32	374,25		-1,51
4-5	0,6	0,8	89,89	0,007	0,326	0,0602				0,07	0,27	373,98		-1,58

Таблица 3.29 – Анализ качества напряжения (расчет отклонений напряжения) для самого удаленного электроприемника (максимальный режим)

Участок	cosφ	sinφ	l, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, Β	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,113	3,95				0,13	13	10487		4,87
Участок	cos (φ)	sin (φ)	Κ3(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up,	ΔU, %	ΔU, Β	Uвн, В	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	0,64	1,97	64,16	100	1,97	4,5	4,05	2,82	282	10205	387,79	2,05
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, B	U, B		
3-4	0,59	0,81	26,74	0,072	1,94	0,0675				1,05	3,99	383,8		1
4-5	0,6	0,8	39,76	0,01	1,94	0,0675				0,22	0,84	382,96		0,78

Таблица 3.30 – Анализ качества напряжения (расчет отклонений напряжения) для самого удаленного электроприемника (минимальный режим)

Участок	cosφ	sinφ	1, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, Β	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,113	2,765				0,091	9,1	9990,9		-0,091
Участок	cos (ф)	sin (ф)	Кз(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up,	ΔU, %	ΔU, B	Uвн, В	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	0,45	1,97	44,91	100	1,97	4,5	4,05	1,98	198	9792,9	372,13	-2,07
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, Β	U, B		
3-4	0,59	0,81	26,74	0,072	1,94	0,0675				0,735	2,793	368,14		-3,12
4-5	0,6	0,8	39,76	0,01	1,94	0,0675				0,154	0,588	367,3		-3,34

В минимальном режиме потери в кабелях, питающих рассматриваемый электроприемник принимаются такими же, как и в максимальном режиме. Т.е.

в минимальном режиме подразумевается отключение части нагрузки, не связанной с данным рассматриваемым электроприемником.

Таблица 3.31 – Анализ качества напряжения (расчет отклонений напряжения) для самого удаленного электроприемника (послеаварийный режим)

Участок	cosφ	sinφ	l, км	R ₀ , Ом/км	X ₀ , Ом/км	Ip, A				ΔU, %	ΔU, B	U, B		Отклонение напряжения V, %
1-2	0,61	0,79	1,5	1,94	0,113	7,9				0,26	27,3	10472,7		4,74
Участок	cos (ф)	sin (ф)	Кз(β)	ΔРк.з., кВт	S _{III} , кВА	Sт.ном, кВА	Ua, %	Uк, %	Up, %	ΔU, %	ΔU, B	Uвн, B	Uнн, В	Отклонение напряжения V, %
2-3	0,61	0,79	1,28	1,97	128,32	100	1,97	4,5	4,05	5,63	563	9909,7	376,57	-0,9
Участок	cosφ	sinφ	I, A	1, км	R ₀ , Ом/км	X ₀ , Ом/км				ΔU, %	ΔU, B	U, B		
3-4	0,59	0,81	26,74	0,072	1,94	0,0675				1,05	3,99	372,58		-1,95
4-5	0,6	0,8	39,76	0,01	1,94	0,0675				0,22	0,84	371,74		-2,17

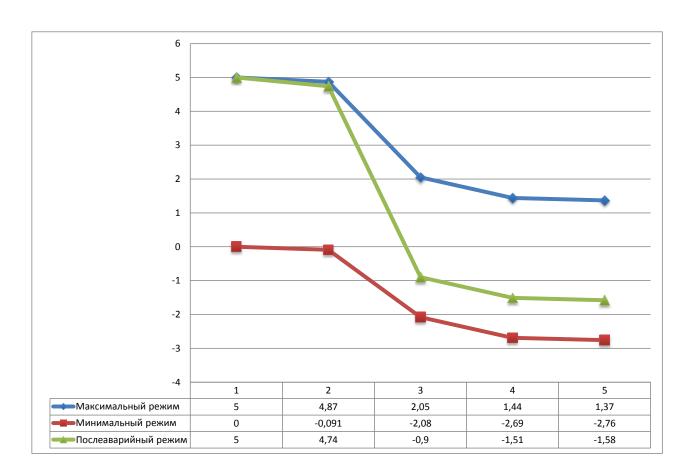


Рисунок 3.10 – Эпюры отклонений напряжения для мощного ЭП

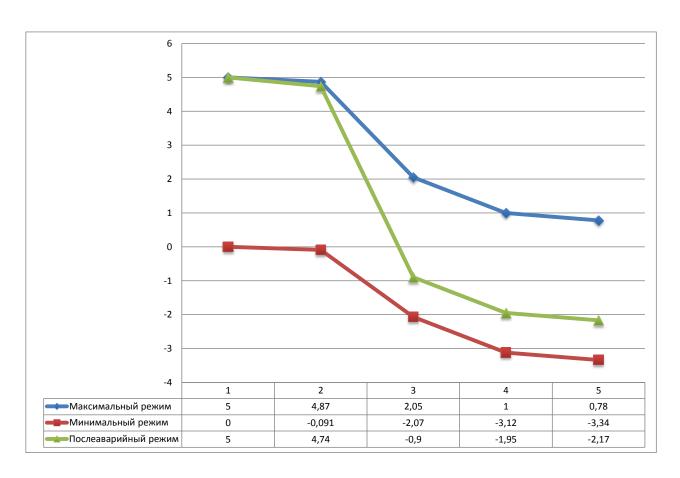


Рисунок 3.11 – Эпюры отклонений напряжения для удаленного ЭП

ЗАКЛЮЧЕНИЕ

Результатом данной бакалаврской работы является система электроснабжения цеха производства погонажных изделий деревообрабатывающей компании «Ресурс-М» г. Красноярск. Система электроснабжения проектировалась с учетом современных требований к системам, таких как надежность, экономичность, безопасность для человека и окружающей среды.

В теоретической части приведена характеристика объекта проектирования, осуществлен обзор методов расчета электрических нагрузок .

В аналитической части произведен анализ существующего состояния в области систем электроснабжения предприятий, приведено обоснование выбора технологии проектирования системы электроснабжения.

В практической части рассчитаны электрические нагрузки по уровням электроснабжения. Из двух схем электроснабжения на основании технико-экономического сравнения разработана радиальная схема на распределительных пунктах на стороне низкого напряжения, выбрано соответствующее оборудование.

Проведены светотехнический и электротехнический расчеты освещения. Выбранное электротехническое оборудование проверено на действие токов короткого замыкания.

Анализ качества напряжения у характерных электроприемников, проведенный для различных режимов работы, показал, что отклонения напряжения лежат в допустимых пределах.

Предложенные в работе мероприятия позволяют решить ряд проблем:

- внедрение эффективной программы по энергосбережению в короткий срок окупаемости;
 - уменьшение потребления энергетических ресурсов;
- обеспечение рационального использования энергетического оборудования и экономное расходование всех видов энергии;
 - снижение негативного воздействия на окружающую среду.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Герасименко, А. А. Передача и распределение электрической энергии [Текст]: учебное пособие / А. А. Герасименко, В. Т. Федин. Ростовн/Д: Феникс; Красноярск: Издательские проекты, 2006. 720 с.
- 2. Дипломное проектирование по специальности 140211.65 «Электроснабжение» [Текст]: учеб. пособие / Л. Л. Латушкина, А. Д. Макаревич, А. С. Торопов, А. Н. Туликов; Сиб. федер. ун-т, ХТИ филиал СФУ. Абакан: Ред.-изд. сектор ХТИ филиала СФУ, 2012. 232 с.
- 3. Киреева, Э.А. Электроснабжение и электрооборудование цехов промышленных предприятий [Текст]: Учебное пособие / Э.А. Киреева. М.: КноРус, 2013. 368 с.
- 4. Коробов, Г.В. Электроснабжение. Курсовое проектирование[Текст]: Учебное пособие / Г.В. Коробов, В.В. Картавцев, Н.А. Черемисинова. СПб.: Лань, 2011. 192 с.
- 5. Козловская, В. Б. Электрическое освещение [Текст]: справочник / В. Б. Козловская, В. Н. Радкевич, В. Н. Сацукевич. Минск: Техноперспектива, 2007. 253 с.
- 6. Конюхова, Е.А. Электроснабжение объектов[Текст]: Учебное пособие для среднего профессионального образования / Е.А. Конюхова. М.: ИЦ Академия, 2013. 320 с.
- 7. Кудрин, Б.И. Электроснабжение [Текст]: Учебник для студентов учреждений высшего профессионального образования / Б.И. Кудрин. М.: ИЦ Академия, 2012. 352 с.
- 8. Мукаев, А. И. Управление энергосбережением и повышение энергетической эффективности в организациях и учреждениях бюджетной сферы [Текст]: Практическое пособие / А.И. Мукаев Фаменское: ИПК ТЭК, 2011. 212 с.
- 9. НТП ЭПП-94. Нормы технологического проектирования. Проектирование электроснабжения промышленных предприятий. М.: АООТ ОТК ЗВНИ ПКИ Тяжпромэлектропроект, 1994 (1-я редакция). 78 с.
- 10. Пособие к «Указаниям по расчету электрических нагрузок». М.: Всероссийский научно-исследовательский, проектно-конструкторский институт Тяжпромэлектропроект, 1993 (2-я редакция). 86 с.
- 11. Правила устройства электроустановок. 7-е издание. СПб.: Издательство ДЕАН, 2013.-701 с.
- 12. РД 153-34.0-20.527-98 Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования; дата введ. 23.03.1998. М.: Издательство МЭИ, 2013. 131 с.
- 13. PTM 36.18.32.4-92. Указания по расчету электрических нагрузок; дата введ. 01.01.1993. М.: ВНИПИ Тяжпромэлектропроект, 2007. 27 с.

- 14. СП 31-110-2003 Проектирование и монтаж электроустановок жилых и общественных зданий; дата введ. 01.01.2004. М.: ВНИПИ Тяжпром-электропроект, 2011. 65 с.
- 15. Справочная книга для проектирования электрического освещения / Под. ред. Г. М. Кнорринга. Л.: Энергия, 1976. 380 с.
- 16. Справочник по электроснабжению и электрооборудованию [Текст]: В 2 т. т 2. Электрооборудование / Под общ. ред. А. А. Федорова. М.: Энергоатомиздат, 2007. 602 с.
- 17. Справочник электрика / Под ред. Э. А. Киреевой и С. А. Цырука. М. : Колос, 2007.-464 с.
- 18. Сибикин, Ю.Д. Электроснабжение [Текст]: Учебное пособие / Ю.Д. Сибикин, М.Ю. Сибикин. М.: РадиоСофт, 2013. 328 с.
- 19. Филатов, И.В. Электроснабжение осветительных установок [Текст]: учебное пособие / И. В. Филатов, Е. В. Гурнина. Издательство московского государственного открытого университета. М. 2009. 321 с.
- 20. Хромченко, Г. Е. Проектирование кабельных сетей и проводок [Текст]: / Г. Е. Хромченко, П.И. Анастасиев, Е.З. Бранзбург, А.В. Коляда. М.: Энергия, 2010. 397 с.
- 21. Шеховцов, В. П. Расчет и проектирование схем электроснабжения [Текст]:. Методическое пособие для курсового проектирования. М.: ФОРУМ: ИНФРА—М, 2010. 214 с.
- 22. Электротехнический справочник [Текст]: в 4 т. Т. 3. Производство, передача и распределение электрической энергии / Под общ. ред. профессоров МЭИ В. Г. Герасимова и др. (гл. ред. А. И. Попов). 12-е изд., стер. М.: Издательство МЭИ, 2012. 966 с.
- 23. Электротехнический справочник [Текст]: в 4 т. Т. 4. Использование электрической энергии / Под общ. ред. профессоров МЭИ В. Г. Герасимова и др. (гл. ред. А. И. Попов). 11-е изд., стер. М.: Издательство МЭИ, 2014. 704 с.
- 24. Электротехнический справочник [Текст]: в 3-х т. Т. 2. Электротехнические устройства/Под. общ. ред. Проф. МЭИ В. Г. Герасимова, П. Г. Грудинского, Л. А. Жукова и др. 8-е изд., испр. и доп. М.: Энергоиздат, 2011. 658 с.: ил.
- 25. Электротехнический справочник [Текст]: в 4 т. Т. 2. Электротехнические устройства и изделия / Под общ. ред. профессоров МЭИ В.Г. Герасимова и др. 10-е изд. М.: Издательство МЭИ, 2012. 988 с.