Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Институт космических и информационных технологий Базовая кафедра геоинформационных систем

УТЕ	ВЕРЖД	ΑЮ
Заве	едующи	ий кафедрой
		_ В.И. Харук
подп	ИСЬ	
‹	>>	2018 г.

БАКАЛАВРСКАЯ РАБОТА

09.03.02 - Информационные системы и технологии

Информационная технология использования спутниковых и наземных спектрометрических данных для оценки засоренности агроценозов

Руководитель доцент	г каф. Б-ГИС, к. фм	.н. А.В. Картушинский
Выпускник	подпись, дата	К.Ю. Силкова
Консультант по обработке данных	подпись, дата	И.Ю. Ботвич
Нормоконтролер	полпись, лата	Е.В. Федотова

СОДЕРЖАНИЕ

Введение	3
1 Методы определения засоренности посевов	5
1.1 Методы определения засоренности посевов по наземным данным	5
1.2 Методы определения засоренности посевов по спутниковым данным	7
2 Оборудование и программное обеспечение	12
2.1 Спектрорадиометр PSR-1100	12
2.2 Спутники Sentinel-2	14
2.2 Спутник Ресурс-П	17
2.3 Программный комплекс ENVI	19
2.4 Программное обеспечение SNAP	20
3 Обработка данных	22
3.1 Обработка данных дистанционного зондирования Земли	22
3.1.1 Подготовка к обработке снимка «Ресурс-П»	22
3.1.2 Векторизация полей	23
3.1.3 Переформатирование векторных файлов	25
3.1.4 Извлечение данных из снимка Sentinel-2	26
3.2 Обработка наземных данных	29
4 Анализ данных	31
4.1 Анализ наземных данных	31
4.2 Анализ спутниковых данных	40
Заключение	54
Список сокращений	56
Список использованных источников	57

ВВЕДЕНИЕ

сельскохозяйственных посевов (количество Проблема засоренности сорных растений) остается самой актуальной в настоящее время. Зависимость сельскохозяйственного производства от засоренности посевов приводит к изменчивости производства сельскохозяйственной продукции от года к году. Сорные растения не только снижают урожай, а значит, увеличивают себестоимость сельскохозяйственной продукции, ухудшают НО И ee качество. Также они истощают культурные посевы, извлекая из почвы большое количество питательных веществ и воды. Однако учесть засоренность посевов не просто.

Известно, что учет засоренности посевов проводится с разными целями и в разные сроки:

- для получения сведений об общей засоренности полей и принятия решений о целесообразности защитных мероприятий;
- для установления общего характера засоренности территории, определения границ распространения важнейших видов сорняков;
- для изучения динамики засоренности, эффективности защитных мероприятий при возделывании культур, определения структуры сорного компонента и вреда, причиняемого сорняками.

В первом случае, проводится разовый учет засоренности в критический период во взаимоотношениях культурных и сорных растений в оптимальные для применения средств защиты растений сроки. Во втором – на более поздних фазах развития культурных и сорных растений (обычно цветение) в ходе геоботанических маршрутно-рекогносцировочных обследований. В третьем случае проводится несколько учетов засоренности опытных участков (в начале, середине и конце вегетации культурных растений) в стационарных исследованиях [1].

Арсенал современных методов оценки засоренности посевов разнообразен и сравнительный анализ этих методов, позволяет выявить и отобрать наиболее подходящие.

Следовательно, целью данной работы является отработка методики оценки засоренности посевов путем использования спутниковых и наземных спектрометрических данных.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- провести обзор существующих методов оценки засоренности сельскохозяйственных посевов по спутниковым и наземным данным;
- провести сбор, предварительную и тематическую обработку спутниковой информации, полученной в течение 2017 г.;
- провести полевое спектрометрирование объектов на территории Красноярского НИИСХ ФИЦ КНЦ СО РАН в близи д. Минино в течение периода вегетации 2017 г.
- провести анализ значений КСЯ, спектрального отражения, вегетационных индексов засоренности по спутниковым и наземным данным;
 - выявить возможности применения совместного анализа данных.

1 Методы определения засоренности посевов

Спецификой сельскохозяйственного производства является его зависимость от засоренности посевов (количество сорных растений), которая приводит к изменчивости производства сельскохозяйственной продукции от года к году. Подобная изменчивость оказывает значительное влияние на рынки сельскохозяйственной продукции, на цены. В связи с этим большое значение имеет независимая оценка объемов производства сельскохозяйственной продукции и их заблаговременное прогнозирование, а также контроль за информацией, которая используется регулирования ДЛЯ рынков сельскохозяйственной продукции и планирования ее производства.

Учитывая недостаток информации о засоренности посевов можно утверждать, что изучение и развитие методов спутникового мониторинга сельскохозяйственных угодий и полевой спектрометрии, как новой процедуры измерения, стоят в ряду приоритетных задач [2, 3, 4].

1.1 Методы определения засоренности посевов по наземным данным

Для определения засоренности посевов используют в основном следующие методы: глазомерный, количественный, весовой и количественновесовой.

Глазомерный (оперативный) метод учета сорняков заключается в том, что поле проходят по диагонали и через равные промежутки регистрируют сорняки всех видов. Данные наблюдений оценивают по четырех балльной шкале:

- 1 балл сорняки в посеве единичные;
- 2 балла сорняки уже не редкость, но их в посеве еще мало;
- 3 балла сорняков много, но меньше, чем культурных растений;
- 4 балла сорняков больше, чем культурных растений и они их заглушают.

Среднее из оценок засоренности нескольких участков составляет балл засоренности посева. Несмотря на разные сроки вегетационного периода сорняков, глазомерные оценки засоренности следует проводить несколько раз в начале, середине и конце вегетации. В таблицу учета вносят баллы засоренности поля сорняками трех-четырех биологических групп, чаще всего встречающихся, а многочисленную биологическую группу сорняков называют.

Глазомерный метод определения засоренности поля через свою упрощенность и несовершенство применяют только во время оперативного обследования, которое проводят в начале вегетации растений. Результаты этого обследования является обоснованием необходимости проведения текущих мероприятий для борьбы с сорняками (боронование, внесение гербицидов и т.п.) с момента появления всходов культуры и во время дальнейшего ухода за ее посевами.

Более объективными следует считать количественный, весовой и количественно-весовой методы определения засоренности, применяемых при обследовании полей.

По количественному методу определения засоренности по диагонали поля размером до 100 га в 10 местах, размером до 100 - 150 га - в 20, а размером более 150 га - в 30 местах через равные промежутки накладывают рамки и в них подсчитывают все сорняки каждого вида (или биологической группы). Для учета многолетних сорняков пользуются учетными рамками площадью 2 - 3 м², а за подавляющего числа малолетних сорняков — 0,25 - 1,0 м² в зависимости от степени засоренности посева.

В зависимости от цели наблюдений подсчитывают общее количество сорняков. Данные расчетов заносят таблицу. Иногда в посевах растет много сорняков, но они небольшие и не наносят им серьезный вред. Однако отдельные сорняки (особенно из группы многолетних), хотя и встречаются реже, однако имеют большую массу и значительно снижают урожайность сельскохозяйственных культур. Поэтому для учета лучше использовать весовой

метод, при котором все сорняки с учетной площадки взвешивают в сыром, а затем - в воздушно сухом состоянии.

С целью получения наиболее полной информации о фактической засоренность посевов, лучше пользоваться количественно-весовым методом учета сорняков, при котором на выбранной площадке подсчитывают количество сорняков и определяют их массу. Зная при этом массу урожая и количество культурных растений на учетной площади, такой метод учета дает возможность рассчитать процент засоренности посева по массе и количеству сорняков [5].

1.2 Методы определения засоренности посевов по спутниковым данным

Изучая литературу по данной теме, были найдены и рассмотрены несколько методов определения засоренности сельскохозяйственных угодий, суть которых описана ниже.

В первом методе для анализа выбираются несколько полей засеянных одной культурой (например, ячменем). Засоренность посевов определялась 4 раза в течение сезона вегетации (в данном методе это 15 апреля, 15 мая, 22 июля и 2 сентября). В день полевых работ предварительно проводилась съемка полей с использованием квадрокоптера DJI Phantom 4 (с 12-мегапиксельной фотокамерой).

Полученные изображения используются для визуального выделения зон засоренности посевов на каждом поле. В каждой выделенной зоне выбираются 3 представительные площадки. Посевы на каждой площадке фотографировались 5 раз в надир на камеру с объективом «рыбий глаз». Затем делается укос для определения надземной фито-массы культуры и сорняков с участка посевов 0.5×0.5 метров. Скошенные растения разделяются на культуру и сорняки и взвешиваются раздельно на весах с точностью ± 0.1 грамм. Для

каждой зоны рассчитывается арифметические средние значения параметров засоренности.

По полученным фотографиям в лабораторных условиях производится расчет проективного покрытия посевов в целом и сорняков в отдельности на основе подходов программное обеспечение (ПО) CanEye.

Данные, полученные в результате анализа 5 фотографий и укоса растений для каждой площадки, осреднялись на зоны засоренности посевов и затем взвешенно осреднялись для всего поля.

Далее для каждого поля с использованием спутникового сервиса «ВЕГА» была осуществлена экстракция еженедельных величин вегетационного индекса Normalized Difference Vegetation Index (NDVI), осредненных для каждого поля культуры. Сервис «ВЕГА» содержит NDVI, рассчитанные по **MODIS** МООО9). Непрерывно (продукт пополняемый данным ежедневных данных MODIS охватывает территорию России за период с 2002 года по настоящее время, а разработанная технология их предварительной обработки позволяет получать очищенные от влияния мешающих факторов композитные еженедельные изображения с пространственным разрешением 250 метров для дальнейшего тематического анализа. Границы всех полей были оцифрованы в «ВЕГА» и для них определялось среднее значение индекса NDVI.

После проводился анализ влияния засоренности посевов на величину NDVI, полученную с использованием сервиса «ВЕГА». Увеличение значений вегетационного индекса свидетельствует о засоренности посевов[6].

Следующим методом определения засоренности посевов является парование.

Для оценки засоренности полей выбирались несколько тестовых участков. Для определения степени засоренности посевов выделялись три класса:

- класс 1: массив незасоренных или слабо засоренных полей, характеризующийся хорошим состоянием посевов с засоренностью полей до 20

% в нижнем ярусе и своевременно проведенной химической обработкой против широколиственных сорняков;

- класс 2: массив из средне засоренных полей, с отдельными слабо засоренными и сильно засоренными полями. Средне засоренные поля имели удовлетворительное состояние посевов с засоренностью полей до 40–50 % в нижнем и верхнем ярусе, оказывающее заметное влияние на развитие зерновых культур;
- класс 3: массив из сильно засоренных полей, среди которых имелись отдельные средне засоренные поля. Для сильно засоренных полей характерно плохое состояние посевов с сорняками в верхнем ярусе, занимающими более 50 % площади и в значительной степени угнетающими культурные растения.

Методика определения степени засорения сельскохозяйственных полей базируется на построении маски обработанных в весенний период полей (май – июнь) и оценки внутри этой маски доли полей под парами. Для этого привлекаются данные каналов взятых с космического аппарата (например – MODIS: канал 1: 0,62–0,67 мкм и канал 2: 0,841–0,876 мкм, имеющих разрешение 250 м), и проводится статистический анализ спутниковых индексов вегетации за период май – август.

Для поиска факторов, позволяющих разделить три класса засоренности в соответствующем фазовом пространстве, по данным различных каналов проанализированы средние спектральные характеристики выбранных угодий. Из проверенных спектральных характеристик массивов полей среднее значение второго канала и его среднеквадратичное отклонение оказались наиболее значимыми параметрами [7].

Суть следующего метода определения засоренности посевов заключается в расчете по спутниковым данным вегетационного индекса NDVI.

Для проведения работ выбираются сельскохозяйственные поля.

Характерным признаком растительности и ее состояния является спектральная отражательная способность, выражающаяся через коэффициент

яркости. Коэффициент спектральной яркости (КСЯ) – это отношение яркостей И поступившей на поверхность электромагнитной определенного диапазона. Наибольшие значения КСЯ для растительных сообществ приходятся на ближнее ИК-излучение (0,6-0,7 мкм), тогда как на красную часть видимого диапазона приходится минимум (0,7-1,0) мкм). Знания связи структуры И состояния растительности ee спектрально отражательными способностями позволяют использовать аэрокосмические снимки для картографирования и идентификации типов растительности. Для работы co спектральными характеристиками производился расчет вегетационных В работе был применен индексов. нормализованный разностный индекс растительности NDVI. Значения NDVI рассчитываются по формуле 1:

$$NDVI = (NIR - RED)(NIR + RED),$$
 (1)

где *RED* – КСЯ в красной части видимого диапазона;

NIR – КСЯ ближнего инфракрасного (ИК)-излучения [8].

Данный индекс базируется на двух наиболее стабильных (не зависящих от прочих факторов) участках спектральной кривой отражения сосудистых растений. То есть высокая фотосинтетическая активность (связанная, как правило, с густой растительностью) ведет к меньшему отражению в красной области спектра и большему в ИК-диапазоне. Отношение этих показателей друг к другу позволяет четко отделять и анализировать растительные объекты от прочих природных объектов. Использование же не простого отношения, а нормализованной разности между минимумом и максимумом отражений увеличивает точность измерения, позволяет уменьшить влияние таких явлений, как различия в освещенности снимка, облачности, дымки, поглощение атмосферой. Для растительности индекс **NDVI** радиации положительные значения, и чем больше зеленая фитомасса, тем он выше. На значения индекса влияют также видовой состав растительности, состояние,

экспозиция и угол наклона поверхности. NDVI может принимать значения от — 1 до 1. Для зеленой растительности индекс обычно принимает значения от 0.2 до 0.8. NDVI может быть рассчитан на основе любых снимков высокого, среднего или низкого разрешения, имеющих спектральные каналы в красном (0.55–0.75 мкм) и ИК-диапазоне (0.75–1.0 мкм).

Значения NDVI рассчитывались на основе снимков среднего разрешения спутника Landsat.

После проводится анализ полученных результатов и делается вывод [9].

Изучив и проанализировав литературу по данной теме, для выполнения работы были выбраны следующие оборудование и программное обеспечение:

- для сбора наземных данных: спектрорадиометр PSR-1100;
- для сбора спутниковых данных: спутники Ресурс-П, Sentinel-2A и Sentinel-2B;
- для обработки спутниковых данных: программный комплекс (ПК) ENVI, программное обеспечение SNAP.

2 Оборудование и программное обеспечение

2.1 Спектрорадиометр PSR-1100

Каждый спектрометр и спектрорадиометр компании SPECTRAL EVOLUTION поставляется с полнофункциональным, удобным для обработки данных и анализа спектров программным обеспечением DARWin SP Data Acquisition Module.

Для большего удобства, спектрометры и спектрорадиометры компании SPECTRAL EVOLUTION по запросу клиента могут доукомплектовываться ноутбуками, на которые уславливается программное обеспечение DARWin SP Data Acquisition Modules или PDA Getac PS336 с предустановленным специализированным ПО DARWin Mobile [10].

Бесспорным достоинством спектрометров компании SPECTRAL EVOLUTION является то, что все портативные спектрометры компании SPECTRAL EVOLUTION также оснащены сенсорным управлением и ЖК-дисплеем. Компания SPECTRAL EVOLUTION предлагает PDA совместимую версию программного обеспечения DARWin SP Data Acquisition Package Mobile, благодаря которой можно быстро проанализировать данные, а также запустить процесс сбора данных дистанционно. При помощи PDA к спектрам можно добавлять GPS информацию, фотографии (при помощи встроенной 5 мегапиксельной камеры), а также делать голосовые заметки с помощью встроенного микрофона.

Таблица 1 – Характеристики спектрорадиометра PSR-1100

Модель	PSR-1100
Оптика (включённая)	Съёмный 1 метровый оптоволоконный кабель с разъёмом FC
Спектральный диапазон	320-1100нм
Спектральное разрешение	3.0нм при 600нм
Пропускная способность	1.5нм
Щель	50мкм
Конвертер A/D	16 бит

Окончание таблицы 1

Воспроизводимость	0.1нм
длины волны	
Точность длины волны	0.5нм
Время интеграции	8-2000мс
Встроенная память	2500 scans in stand-alone mode

Защищённый карманный персональный компьютер GetacPS236 соответствует стандарту MIL-STD 810G и IP67, опционально поддерживающим работу в высокоскоростных беспроводных сетях HSDPA. Встроенный GPS-приёмник, электронный 3компас, альтиметр мегапиксельная камера с автофокусом были объединены в одно устройство. Благодаря наличию портов RS232 и USB ОТG, Getac PS236 обеспечивает высокую совместимость И гибкость подключений различных ДЛЯ промышленных применений. Объём встроенной памяти составляет 4 Гб; КПК оснащён слотом для внешней карты памяти формата SDHC (до 16 Гб) эффективною обработку обеспечивающий данных И ИХ хранение. Устройство быть оборудовано цифровой может клавиатурой функциональными клавишами в соответствии с различными требованиями заказчика. Аккумуляторная батарея коммуникатора PS236 обеспечивает до 10 часов непрерывной работы [11].

Рисунок 1 - Карманный персональный компьютер Getac PS236

Технические характеристики:

- соответствует стандартам MIL-STD-810G и IP67;
- операционная система Microsoft Windows Mobile® 6.1;
- объем памяти 3.5G WWAN (HSDPA / WCDMA / EDGE / GPRS / GSM);
 - порт последовательного ввода-вывода данных RS232 и USB OTG;
- слот SDIO/SDHC для карт памяти для расширения объёма хранения данных;
- заменяемая в процессе эксплуатации литий-ионная аккумуляторная батарея 5600 мА-ч, обеспечивающая продолжительное время непрерывной работы;
- встроенный высокочувствительный GPS-приёмник и 3-мегапиксельная камера с автофокусом;
- соответствует требованиям ATEX EC для эксплуатации во взрывоопасных средах (опция).

Darwin — это открытая POSIX-совместимая операционная система, выпущенная AppleInc в 2000 году. Она совмещает код, написанный самой Apple, с полученным от NeXTSTEP (система выпущена в 1989), FreeBSD (выпущена в 1993) и прочих свободных проектов. Система Darwin представляет собой набор основных компонентов, используемых в macOS и iOS. Она совместима с третьей версией спецификации единой UNIX (SUSv3) и POSIX-приложениями и утилитами.

2.2 Спутники Sentinel-2

Sentinel-2 — семейство спутников дистанционного зондирования Земли Европейского космического агентства.

Спутники Sentinel-2A и Sentinel-2B предназначены для съемки среднего пространственного разрешения и решают следующие задачи:

- мониторинг состояния сельскохозяйственных культур, растительности, лесных и водных ресурсов;
 - создание планов землепользования, точное земледелие;
 - оценка состояния лесов;
 - мониторинг чрезвычайных ситуаций;
 - широкий круг задач в области охраны окружающей среды.

Sentinel-2 оснащен оптико-электронным мультиспектральным сенсором для съемок с разрешением от 10 до 60 м в видимой, ближней инфракрасной (VNIR) и коротковолновой инфракрасной (SWIR) зонах спектра, включающих в себя 13 спектральных каналов, что гарантирует отображение различий в состоянии растительности, в том числе и временные изменения, а также сводит к минимуму влияние на качество съемки атмосферы.

Спутники Sentinel-2 основаны на платформе AstroSat-L, способной размещать множество полезных нагрузок для обеспечения жизнедеятельности на орбите в течение десяти лет с расходной нагрузкой, подходящей для различных потребностей.

Целевая аппаратура на борту спутников Sentinel-2: Мультиспектральный тепловизор MSI. Прибор имеет массу 275 килограммов и требует 266 Вт электроэнергии.

Оптический дизайн был оптимизирован для достижения самого современного качества изображения в очень широком поле зрения (20,6 градуса). Ширина полосы съёмки 290 км [12].

MSI охватывает 13 спектральных полос, используя датчик с кнопочной панелью с оптическим дизайном Three Mirror Anastigmat. Был выбран телескоп с тремя зеркалами Анастигмат (ТМА) с диаметром зрачка 150 мм, для обеспечения большой области обзора и минимизации искажений.

В рамках данной работы использовались 4 спектральные полосы: 2, 3, 4, 8, которые представлены в таблице 2.

Таблица 2 – Спектральные полосы для спектров Sentinel-2 (S2Au S2B)

	S2A		S2B		
Номер	Центральная	Полоса	Центральная	Полоса	Пространственное
спектр.полосы	длина волны (нм)	пропускания (нм)	длина волны (нм)	пропускания (нм)	разрешение (м)
2	496,6	98	492,1	98	10
3	560,0	45	559	46	10
4	664,5	38	665	39	10
8	835,1	145	+833	133	10

Далее в таблицах 3 и 4 представлены основные характеристики спутников и съемочной аппаратуры [13].

Таблица 3 – Основные характеристики космического аппарата Sentinel-2

Параметр		Значение			
Даты запуска спутников		23 июня 2015 г. (Sentinel 2A), 7 марта 2017 г. (Sentinel-2B)			
Стартовая площадка		космодром Куру (Французская Гвиана)			
Разработчик		EADS Astrium Satellites (Франция) (ныне — Airbus Defence and Space)			
Оператор		Европейское космическое агентство (ESA)			
Macca		1200 кг			
	Тип	Солнечно-синхронная			
Орбита	Высота	786 км			
	Наклонение	98,5 град.			
Расчетный срок функционирования		7 лет			

Таблица 4 – Основные технические характеристики съемочной аппаратуры

Режим съемки	Мультиспектральный			
Спектральный диапазон, мкм	0,490; 0,560; 0,665; 0,842	0,705; 0,740; 0,783; 0,865; 1,610; 2,190	0,443; 0,945; 1,375	
Пространственное разрешение (в надире), м	10	20	60	
Радиометрическое разрешение, бит на пиксель	12			
Ширина полосы съемки, км	290			
Периодичность съемки, сутки	10			

В работе использовались данные областей интереса (ROI) спектральных каналов 2, 3, 4, 8, полученные с помощью ПО SNAP.

2.2 Спутник Ресурс-П

Ресурс-П серия российских гражданских космических аппаратов дистанционного зондирования Земли [14].

Аппарат предназначен для обновления карт, обеспечения хозяйственной деятельности России, МЧС России, Росрыболовства, Росгидромета и других потребителей, а также получения информации в области контроля и охраны окружающей среды.

Многоспектральная съемочная оптико-электронная аппаратура (СА) "Геотон" разработана, изготовлена, испытана и поставлена в ФГУП ГПНРКЦ "ЦСКБ-Прогресс" в 2012 г. В конце 2012 г. Были завешены комплексные испытания СА "Геотон", а 30 июня 2013 г. состоялся ее успешный запуск в составе космического аппарата "Ресурс-П" [15].

Съемочная оптико-электронная аппаратура "Геотон" космического аппарата (КА) "Ресурс-П" предназначена для оперативного наблюдения и тематического картографирования в интересах народного хозяйства и обеспечивает получение многоспектральных изображений поверхности Земли с высоким пространственным разрешением.

Целевая аппаратура на борту спутников:

- 1. Оптико электронный комплекс (ОЭА) « ГЕОТОН Л 1» с СППИ « САНГУР -1 У ». Первый обеспечивает высокодетальную съёмку земной поверхности в монохроматическом и в 5 спектральных полосах. Второй осуществляет преобразование непрерывно движущегося изображения видимого диапазона, сформированного оптико электронным комплексом , в цифровой электрический сигнал, обработку, сжатие и выдачу его в бортовую аппаратуру высокоскоростной радиолинии.
- 2. Комплекс широкозахватной мультиспектральной съёмочной аппаратуры высокого разрешения (ВР) и среднего разрешения (СР): ШМСА ВР, ШМСА СР. Обеспечивает дистанционную съемку земной и водной

поверхности в панхроматическом и мультиспектральном диапазонах спектра. Могут работать как одновременно, так и раздельно.

3. Гиперспектральная аппаратура (ГСА). Обеспечивает одновременную съемку одного и того же участка земной поверхности в большом количестве узких спектральных диапазонов, охватывающих видимую часть спектра и ближнюю часть инфракрасного диапазона [15].

Далее в таблицах 5 и 6 представлены основные характеристики KA Ресурс-П и характеристики бортовой аппаратуры [16].

Таблица 5 – Основные характеристики космического аппарата Ресурс-П

Параметр		Значение			
Даты запуска спутников		25 июня 2013 г. («Ресурс-П» №1),			
		26 декабря 2014 г. («Ресурс-П» №2),			
		13 марта 2016 («Ресурс-П» №3)			
Стартовая площадка		космодром Байконур (Россия)			
Разработчик		АО «РКЦ «Прогресс» (Россия)			
Оператор		НЦ ОМЗ ОАО «Российские космические системы» (Россия)			
	Тип	Круговая солнечно-синхронная			
Орбита	Высота	475 км			
	Наклонение	97,3 град.			
Расчетный срок функционирования		5 лет			

Таблица 6 – Технические характеристики бортовой аппаратуры «Ресурс-П»

Режим съёмки (аппаратура)	Оптико-электронная аппаратура высо- кого разрешения (ГЕОТОН-Л1)		Широкозахватная муль- тиспектральная съемочная аппаратура (ШМСА)		Гиперспек- тральная съёмочная
	Панхромати- ческий (ПАН)	Мультиспектральный (MC)	Высокого разрешения	Среднего разрешения	аппаратура (ГСА)
Спектральные диапазоны, мкм	0,58 - 0,80	Синий: 0,45 - 0,52 Зеленый: 0,52 - 0,60 Красный: 0,61 - 0,68 Красный 1: 0,67 - 0,70 Красный 2: 0,70 - 0,73 Красный+Ближний ИК: 0,70 - 0,80	Панхром.: 0,43 - 0,70 Синий: 0,43 - 0,51 Зеленый: 0,52 - 0,60 Красный: 0,61 - 0,68 Ближний ИК 1: 0,70 - 0,90 Ближний ИК 2: 0,80 - 0,90		От 96 до 255 спек- тральных каналов в диапазоне 0,4 - 1,1
Разрешение на местности, м	0,7 - 1,0	3 - 4	ПАН: 12 MC: 24	ПАН: 60 MC: 120	25 - 30
Ширина полосы съемки, км	38		96	480	25
Ширина полосы захвата, км	950		1300		950

Особый интерес представляет информация, получаемая гиперспектральной аппаратурой, которая фиксирует излучение объектов в десятках узких спектральных диапазонах. На основании гиперспектральных снимков можно определить зрелость пшеницы, активность микрофлоры в водоеме, степень засоленности почвы и так далее. Такого рода инструмент мониторинга текущего состояния и контроля неоценим в сельском хозяйстве, геологической разведке, экологии[17].

В данной работе использовались снимки КА «Ресурс-П» для определения границ сельскохозяйственных полей, так как разрешение больше чем у снимков, полученных с КА Sentinel-2.

2.3 Программный комплекс ENVI

Программный комплекс (ПК) ENVI — один из наиболее эффективных и доступных программных продуктов, обеспечивающих полный цикл обработки оптико-электронных и радарных данных дистанционного зондирования [18].

Основные преимущества ENVI:

- интуитивно понятный графический интерфейс пользователя;
- программный комплекс ENVI лицензирован ведущими операторами космических данных;
 - интеграция с программными продуктами ArcGIS;
- открытая архитектура и наличие языка программирования IDL, с помощью которого можно автоматизировать существующие и создавать собственные алгоритмы обработки, а также выполнять пакетную обработку данных.

Отличительной особенностью программного комплекса ENVI является открытая архитектура и наличие языка программирования IDL (InteractiveDataLanguage), с помощью которого можно существенно расширить функциональные возможности программы для решения специализированных задач, создавать собственные и автоматизировать существующие алгоритмы

обработки данных, выполнять пакетную обработку данных. Открытая архитектура ENVI обеспечивает удобство обработки и предоставляет пользователю возможность получить необходимую информацию быстро и просто.

Многие алгоритмы анализа изображений в ENVI специально разработаны для обработки больших объемов информации, содержащейся в гиперспектральных снимках. Комбинации спектральных каналов облегчают визуальное дешифрирование изменений различных типов. Обычно при синтезировании каналов используются только три спектральные зоны.

С помощью ПК ENVI обрабатывались снимки, полученные с КА «Ресурс-П» и переформатировались векторные данные, для работы в ПО SNAP, так как оно не поддерживает формат evf.

2.4 Программное обеспечение SNAP

SNAP — это платформа приложений ESA Sentinel (ESA Sentinel Application Platform) с открытым исходным кодом, идеально подходящая для использования данных за наблюдением Земли.

Архитектура SNAP идеально подходит для обработки и анализа наблюдения Земли за счет следующих технологических новшеств: расширяемость, переносимость, модульная клиентская платформа, общая абстракция данных, управление памятью и платформа обработки графиков [19].

Архитектура SNAP включает две подсистемы:

- ядро и интерфейс командной строки SNAP Engine;
- графический интерфейс пользователя SNAP Desktop.

Основные характеристики:

- общая архитектура для всех наборов инструментов;
- очень быстрое отображение изображений и навигация даже изображений с гигапикселей;

- графическая обработка (GPF): для создания пользовательских цепочек обработки;
- расширенное управление уровнями позволяет добавлять и обрабатывать новые наложения, такие как изображения других полос, изображения с серверов WMS или шейп-файлы ESRI;
- определения с богатым регионом для статистики и различных графиков;
 - простое определение битовой маски и наложение;
- гибкая арифметика диапазона с использованием произвольных математических выражений;
- точная репроцессия и орто-исправление для общих картографических проекций;
- геокодирование и выпрямление с использованием наземных контрольных точек;
 - автоматическая загрузка SRTM DEM и выбор плитки;
- библиотека продуктов для эффективного сканирования и каталогизации больших архивов;
 - поддержка многопоточных и многоядерных процессоров;
 - интегрированная визуализация WorldWind.

В данной работе использовался инструмент SNAP: Export Mask Pixels, для извлечения данных (ROI) из снимков полученных спутниками Sentinel-2A и Sentinel-2B.

Ознакомившись с приборами, спутниками и программным обеспечением, необходимыми в работе, и их характеристиками, проводился сбор данных, которые впоследствии обрабатываются и уже по обработанным данным проводится анализ.

3 Обработка данных

3.1 Обработка данных дистанционного зондирования Земли

По полученным путем полевой спектрометрии наземным данным, можно провести анализ засоренности посевов, но для полной и точной информации о степени засоренности можно использовать еще и спутниковые данные.

В данной работе использовались данные, полученные со спутников Ресурс-П, Sentinel-2A и Sentinel-2B для оценки засоренности сельскохозяйственных посевов. Гиперспектральная съёмка является одним из наиболее передовых и эффективных способов получения актуальной информации о свойствах, характеристиках и состоянии земель сельскохозяйственного назначения [20].

Отличительной особенностью гиперспектральных данных является большое количество регистрируемых каналов.

3.1.1 Подготовка к обработке снимка «Ресурс-П»

Комплекс поставки данных с КА «Ресурс-П» представляет собой снимки, полученные в разных спектральных каналах. То есть, каждый канал — это отдельный снимок, для облегчения дальнейшей работы со снимками их необходимо объединить в один снимок с четырьмя каналами. Данная процедура проводилась в ПК ENVI, с помощью инструмента Layer Stacking. Важно учитывать последовательность, в которой будут состыкованы снимки, в данном случае это увеличение длин волн канала. Параметры «склеивания» каналов и создания выходного файла представлены на рисунке 2.

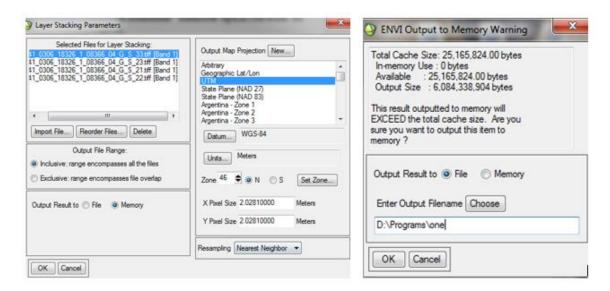


Рисунок 2 – Параметры «склеивания» 4 снимков в один

На выходе получается файл в формате *.hdr — заголовок, и файл изображения в формате ENVI.

3.1.2 Векторизация полей

Перед началом обработки отобранных космических снимков, необходимо векторизовать поля. Данная процедура проводилась по космическим снимкам полученных ОЭА «Геотон», с пространственным разрешением 3 метра, и включала в себя следующие этапы:

- создание векторного слоя границ сельскохозяйственных полей;
- оцифровка границ сельскохозяйственных полей;
- выявление пространственных неточностей и их устранение.

Векторизация производилась в программном комплексе ENVI. Для начала векторизации необходимо открыть диалоговое окно (рисунок 3) инструмента Overlay\Vectors.

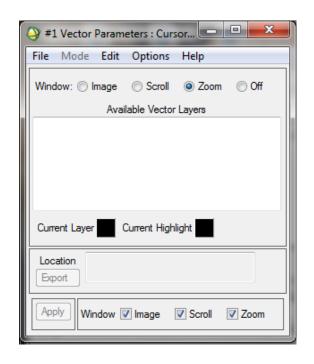


Рисунок 3 – Диалоговое окно инструмента Vectors

В открывшемся диалоговом окне для создания нового векторного файла необходимо выбрать инструмент File\Create New Layer и в открывшемся диалоговом окне (рисунок 4) заполнить поля Layer Name и указать путь для сохранения выходного файла. На выходе получается файл в формате *.evf.

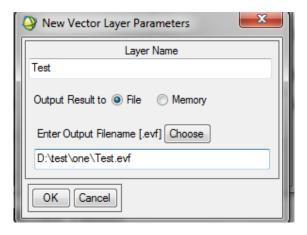


Рисунок 4 – Диалоговое окно инструмента Create New Layer

Далее для создания полигона, в диалоговом окне инструмента Vectors необходимо выбрать инструмент Mode\Add New Vectors при этом активным слоем должен быть тот в котором будет создан новый полигон. Кроме того

необходимо указать в каком окне будет производиться векторизация в данном случае это окно Zoom.

После чего в выбранном окне можно создавать полигон нужного нам поля. Для сохранения полученного полигона необходимо правой кнопкой мыши кликнуть по полигону и в открывшемся списке выбрать Accept New Polygon. Процесс создания нового полигона представлен на рисунке 5. Таком образом оцифровываются все необходимые поля.

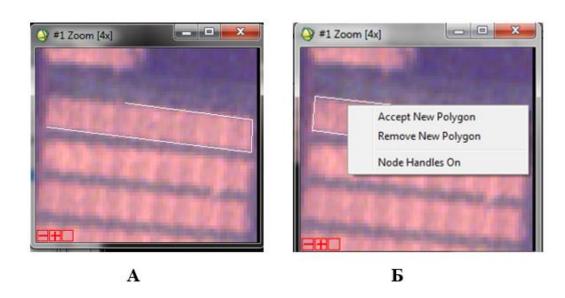


Рисунок 5 – Создание нового полигона (A – оцифровка границ, Б – сохранение полигона)

3.1.3 Переформатирование векторных файлов

Обработка снимков Sentinel-2 производится с помощью ПО SNAP.

Так как созданные векторные файлы формата evf, не поддерживаются ПО SNAP, то необходимо переформатировать векторные файлы в формат shp. Для этого в ПК ENVI нужно открыть инструмент Overlay\Vectors, далее в открывшемся диалоговом окне выбрать File\Open Vector File и выбрать нужные векторные файлы в формате evf. После этого с помощью инструмента File\Export Active Layer Shapefile (рисунок 6) производится сохранение выбранных векторов в формат shp.

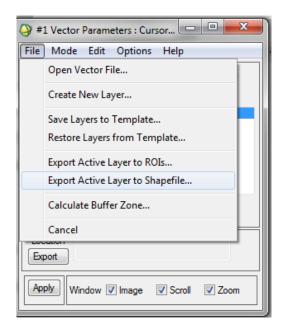


Рисунок 6 – Экспорт векторного файла формата evf в формат shp

Таким образом, с помощью выше описанной процедуры производится перевод всех нужных векторов в необходимый, для работы в SNAP, формат.

3.1.4 Извлечение данных из снимка Sentinel-2

Работа со снимками, полученными с KA Sentinel-2, производится с помощью ПО SNAP.

Для извлечения данных из нужных полей, необходимо экспортировать ранее созданные векторные слои по отдельности в ROI с помощью инструмента Export Mask Pixels, для этого необходимо щелкнуть правой кнопкой мыши по нужному полигону на снимке, далее в открывшемся окне Resampling нажать кнопку Run.

Далее создается текстовый файл со значениями в пикселях на всех каналах, это делается с помощью открывшегося диалогового окна Export Mask Pixel, в котором в поле Select Mask необходимо выбрать маску соответствующую нужному полю. Этот процесс представлен на рисунке 7.

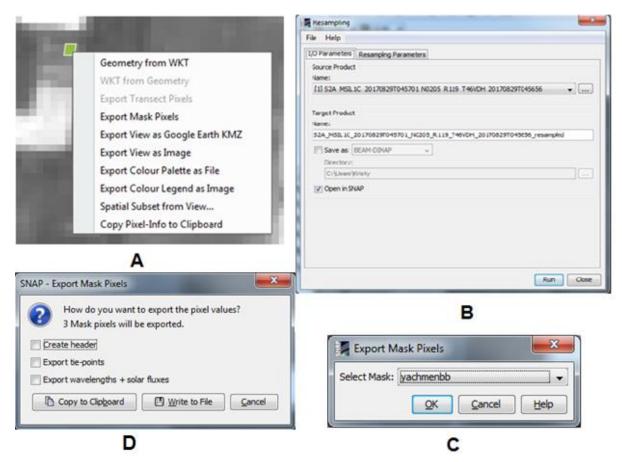


Рисунок 7 — Создание текстового файла (А — диалоговое окно инструмента Export Mask Pixels, В — диалоговое окно Resampling , С — выбор маски, D — сохранение текстового файла)

На рисунке 8 представлен пример выходного файла в формете txt.

```
S2A_MSIL1C20170829T045656_resampled_yachmenbb_Mask.txt — Блок...
<u>Ф</u>айл <u>Правка Формат Вид Справка</u>
# Exported mask 'yachmenbb' on 06-May-2018 20:10:38# Product
name:
S2A_MSIL1C_20170829T045701_N0205_R119_T46VDH_20170829T045656_r
                                          Latitude
esampledPixel-X Pixel-Y Longitude
В3
                         view_zenith_mean
                                          sun_azimuth
view_azimuth_mean
                         sun_zenith
view_zenith_B1 view_azimuth_B1 view_zenith_B2
view_azimuth_B2 view_zenith_B3
                                 view_azimuth_B3 view_zenith_B4
view_azimuth_B4 view_zenith_B5
                                 view_azimuth_B5 view_zenith_B6
view_azimuth_B6 view_zenith_B7
                                 view_azimuth_B7 view_zenith_B8
view_azimuth_B8 view_zenith_B8A view_azimuth_B8A
                view_azimuth_B9 view_zenith_B10
0 view_zenith_B11 view_azimuth_B11
view_zenith_B9
view_azimuth_B10
view zenith B12 view azimuth B128008.5
                                          8442.5
92.6793393686285
                                                           0.099
                         56.08489880879214
                                                   0.112
        0.1588 9.570139
                                  97.66166
                                                   47.7468
164.186 9.64795 94.5971 9.48327
                                          9.50619 100.41
                                 102.13
9.53484 98.8274 9.55329 97.9765 9.5741 97.1168 9.59685
```

Рисунок 8 – Пример выходного текстового файла

Первая строка указывает название маски, дату и время создания. После времени идет имя снимка, из которого извлекались данные (Product name).

Далее следуют значения в пикселях попадающие в выбранный ROI с указанием координат и номеров каналов.

Такие текстовые файлы создаются для всех необходимых ROI. Данная процедура подходит для извлечения данных из снимков Sentinel-2.



Рисунок 9 – Схема последовательности работы со спутниковыми снимками

После получения наземных и спутниковых данных проводилась обработка. Для наземных данных соотносились фотографии с сорняками и спектры, для дальнейшей работы со спутниковыми данными. Для спутниковых

данных проводилась векторизация сельскохозяйственных полей и извлечение данных из снимков Ресурс-П и Sentinel-2 для дальнейшего анализа.

3.2 Обработка наземных данных

Для изучения засоренности посевов сельскохозяйственных культур проводились исследования спектральной яркости посевов пшеницы, ячменя и овса.

Прежде всего, необходимо установить спектрорадиометр (в нашей работе использовался Спектрорадиометр PSR-1100) на штатив. Далее настроить КПК (карманный переносной компьютер) на работу с устройством, в меню Device установить Edit File name и установить начало отсчета с 00001. Например: wheat_00001. Убедиться, что облака не закрывают солнце, т.к. измерения необходимо проводить только в солнечную погоду. Далее перейти во вкладку Scan и начать измерения. Алгоритм работы:

- 1. Установить штатив с прибором на тестовом участке поля.
- 2. Измерить спектр эталона. Для этого необходимо разместить эталон (MgO) на расстоянии 10-15 см от световода спектрофотометра. Этот процесс представлен на рисунке 10. При этом в КПК необходимо нажать кнопку Ref. В дальнейшем измерение спектра эталона необходимо производить при переходе на новое поле или если измерение происходит после того как солнце было скрыто тучами.
- 3. Произвести измерения спектра отражения объекта (необходимо нажать кнопку Tgt). Далее КПК производит автоматический расчет КСЯ объекта и его запись в прибор. После этого на графике произойдет изменение и внизу обновится запись Openedoats_00001.
- 4. Производится фотосъемка тестового участка (вид сверху со стороны съемки спектрофотометра). При необходимости записывается дополнительная информация на бумажный носитель (номер фото, ошибочное измерение, сорняк и т.д.)

5. Переход к следующей точке.

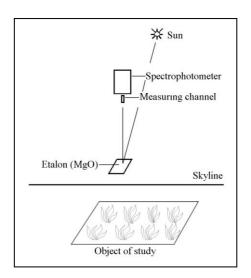


Рисунок 10 – Измерение спектра эталона

При переходе на другое поле необходимо в меню Device установить новое Edit File name и установить начало отсчета с 00001.

4 Анализ данных

4.1 Анализ наземных данных

Измерения для получения наземных данных производились на различных стадиях вегетации. В данном случае 16 июня, 20 июня, 04 июля и 15 августа 2017 года. Карта точек измерений представлена на рисунке 11.

Рисунок 11 — Спутниковое изображение исследуемых полей КрасНИИСХ, желтыми точками отмечены выбранные тестовые участки

Всего исследовалось более 5 различных полей. Регистрация спектров яркости посевов производилось со спектральным измерительным прибором Spectral Evolution.

Для анализа засоренности посевов сельскохозяйственных культур были выбраны посевы пшеницы, ячменя и овса

Полученные данные экспортировались в Microsoft Excel для проведения обработки, путем построения графиков. В ходе обработки рассчитывался средний спектр для каждой из культур (с засорением и без).

Далее на рисунках представлены графики полученных спектров и фотографии посевов с засорением, сделанных в надир.

Рисунок 12 – Графики КСЯ посева овса (20.06.2017)

Рисунок 13 – Фотография посева овса с сорняком (20.06.2017)

Рисунок 14 – Графики КСЯ посева овса (4.07.2017)

Рисунок 15 – Фотография посева овса с сорняком (4.07.2017)

Рисунок 16 – Графики КСЯ посева овса (15.08.2017)

Рисунок 17 – Фотография посева овса с сорняком (15.08.2017)

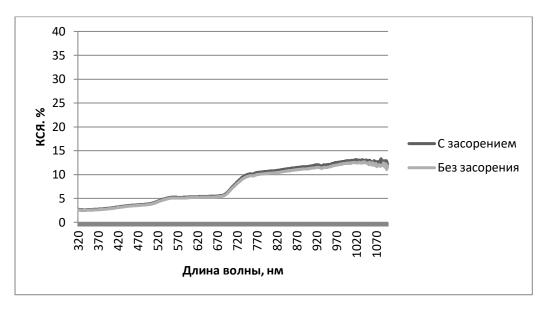


Рисунок 18 – Графики КСЯ посева пшеницы (16.06.2017)

Рисунок 19 – Фотография посева пшеницы с сорняком (16.06.2017)

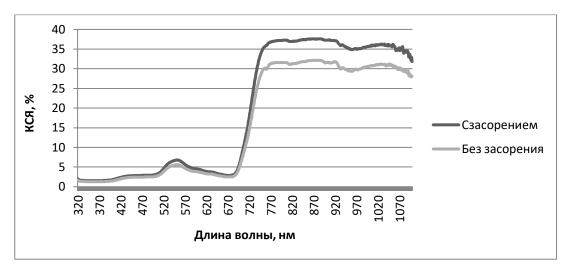


Рисунок 20 – Графики КСЯ посева пшеницы (4.07.2017)

Рисунок 21 — Фотография посева пшеницы с сорняком (4.07.2017)

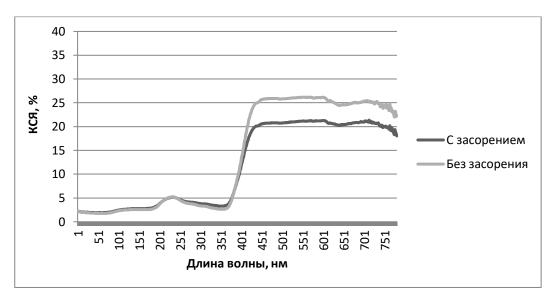


Рисунок 22 – Графики КСЯ посева ячменя (20.06.2017)

Рисунок 23 – Фотография посева ячменя с сорняком (20.06.2017)

Рисунок 24 – Графики КСЯ посева ячменя (4.07.2017)

Рисунок 25 – Фотография посева ячменя с сорняком (4.07.2017)

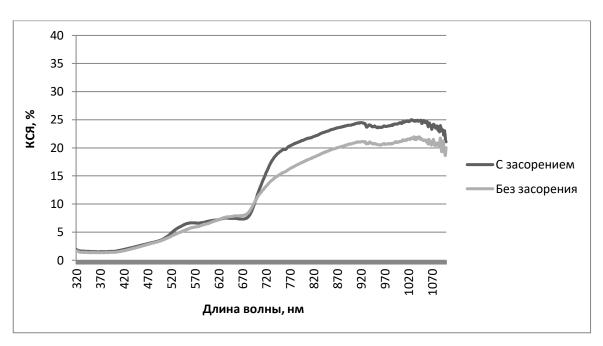


Рисунок 26 – Графики КСЯ посева ячменя (15.08.2017)



Рисунок 27 – Фотография посева ячменя с сорняком (15.08.2017)

Коэффициент спектральной яркости меняется с возрастом растений: он выше у молодых растений и ниже у находящихся в стадии полной зрелости, и

также он выше у посевов с засорением. Это можно отследить по графикам за весь вегетационный период.

4.2 Анализ спутниковых данных

Для оценки засоренности сельскохозяйственных посевов в течение периода вегетации, на основе наземных данных, полученных путем полевой спектрометрии на территории Красноярского НИИСХ ФИЦ КНЦ СО РАН вблизи д. Минино 2017 года, и обработанных в ходе прохождения летней практики, необходимо проанализировать спутниковые данные. Для этого были построены графики значений NDVI и графики значений по каналам посевов овса, ячменя и пшеницы.

Используя наземные данные, а именно, фотографии, на которых присутствуют сорные растения, и координаты спектров, относящиеся к этим снимкам, на выбранных сельскохозяйственных полях, определяются участки засоренности. Пример Фотографии с сорняком и соответствующей ему координате представлены на рисунке 28. Далее рассчитывается NDVI. Результат распределения NDVI на выбранных сельскохозяйственных полях показан на рисунках 29-30.

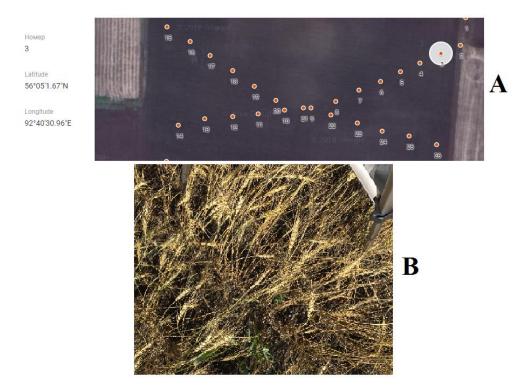


Рисунок 28 — Фотография с сорняком — A, один из спектров (для примера показан третий спектр) с соответствующими координатами — B

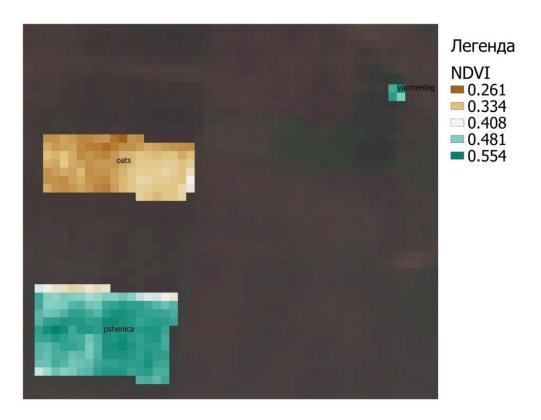


Рисунок 29 — Результат распределения NDVI за 28.07.2017

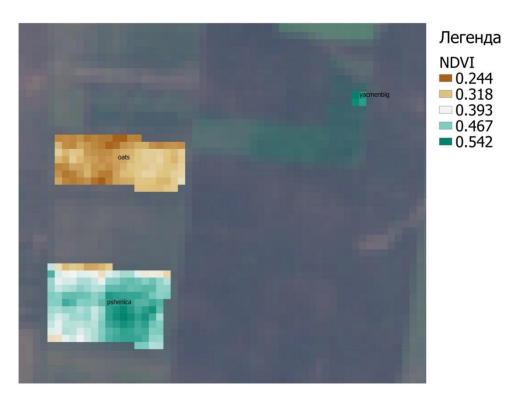


Рисунок 30 – Результат распределения NDVI за 04.08.2017

Построив график значений NDVI, сложно судить о степени засоренности посевов, поэтому было принято решение, построить графики для значений отражения каналов, используемых в работе. Построив графики можно сказать, что значения чистых участков и участков с засорением хорошо отличаются в красном (В4) канале. Максимальные, минимальные и средние значения их различны, а диапазоны этих значений не пересекаются. Это можно увидеть на рисунках 31-34. На графиках значений в зеленом (В3) канале, можно заметить, что максимальные и минимальные значения тоже различны, как и в красном канале. Это можно увидеть на рисунках 35-38.

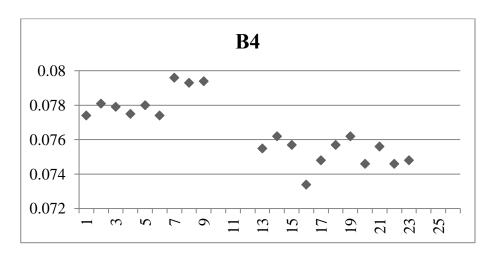


Рисунок 31 — График значений отражения в красном канале посева овса за 28.07.2017

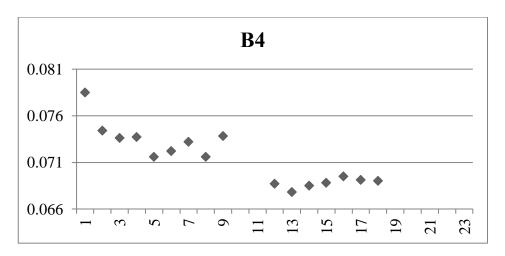


Рисунок 32 — График значений отражения в красном канале посева ячменя за 28.07.2017

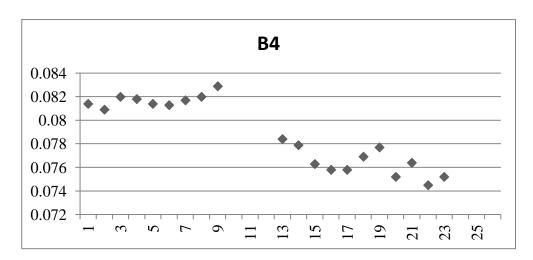


Рисунок 33 — График значений отражения в красном канале посева овса за 04.08.2017

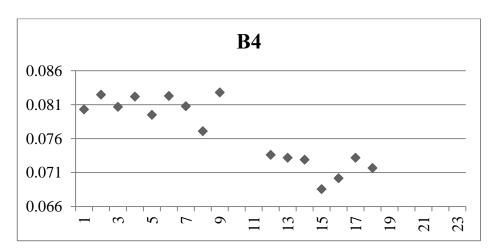


Рисунок 34 — График значений отражения в красном канале посева ячменя за 04.08.2017

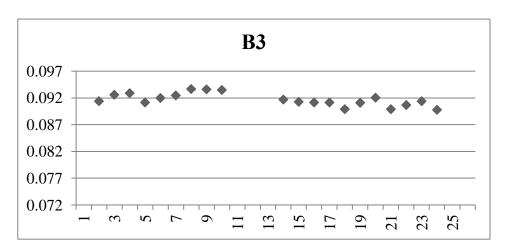


Рисунок 35 — График значений отражения в зеленом канале посева овса за 28.07.2017

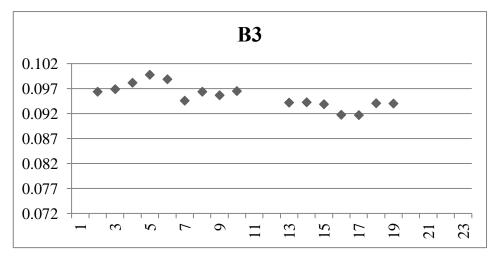


Рисунок 36 – График значений отражения в зеленом канале посева ячменя за 28.07.2017

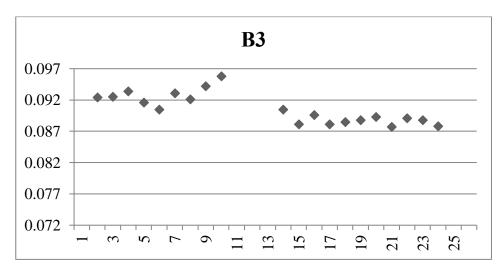


Рисунок 37— График значений отражения в зеленом канале посева овса за 04.08.2017

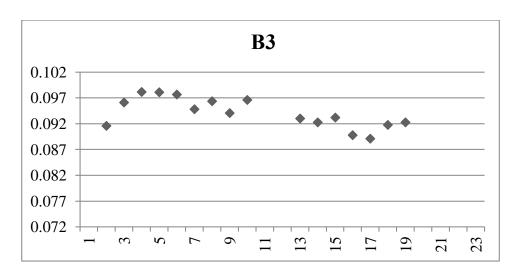


Рисунок 38 — График значений отражения в зеленом канале посева ячменя за 04.08.2017

По графикам значений отражения чистых и засоренных участков посева пшеницы в красном и зеленом каналах можно заметить, что максимальные и минимальные значения различны, а диапазоны слегка пересекаются. Графики представлены на рисунках 39 и 40.

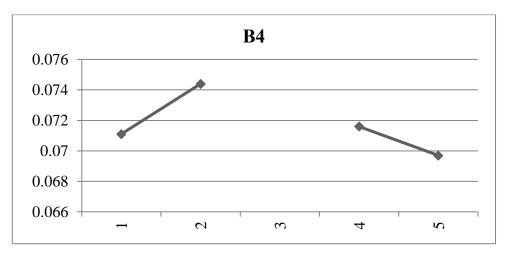


Рисунок 39 — График значений отражения в красном канале пшеницы овса за 28.07.2017

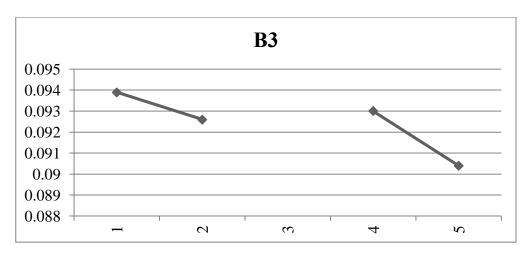


Рисунок 40 – График значений отражения в зеленом канале посева пшеницы за 28.07.2017

По оставшимся построенным графикам (в ближнем инфракрасном (В8) канале, в синем (В2) канале и по графику NDVI) можно проследить скачки значений. Соответствующие графики представлены на рисунках 41-55.

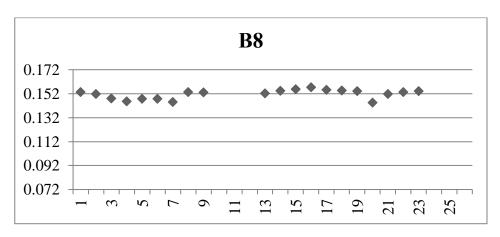


Рисунок 41 — График значений отражения в ближнем инфракрасном канале посева овса за 28.07.2017

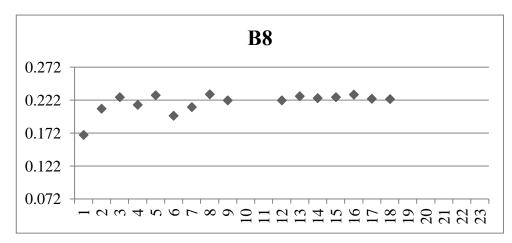


Рисунок 42 — График значений отражения в ближнем инфракрасном канале посева ячменя за 28.07.2017

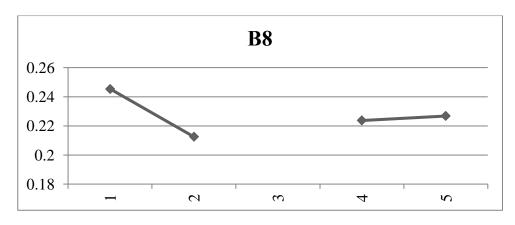


Рисунок 43 — График значений отражения в ближнем инфракрасном канале посева пшеницы за 28.07.2017

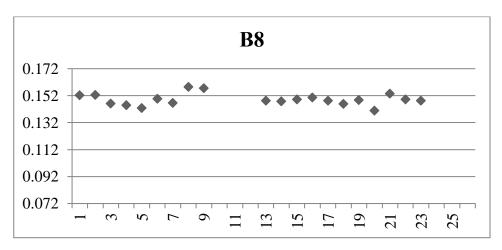


Рисунок 44 — График значений отражения в ближнем инфракрасном канале посева овса за 04.08.2017

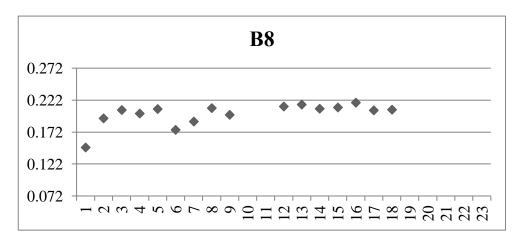


Рисунок 45 — График значений отражения в ближнем инфракрасном канале посева ячменя за 04.08.2017

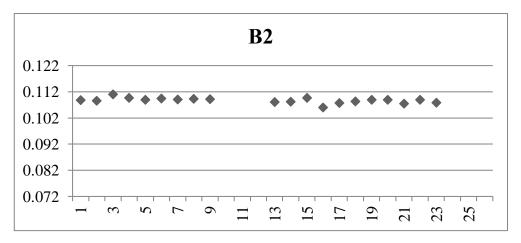


Рисунок 46 — График значений отражения в синем канале посева овса за 28.07.2017

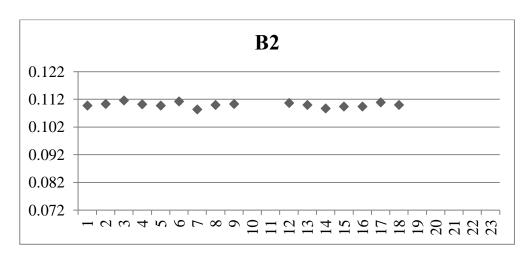


Рисунок 47 — График значений отражения в синем канале посева ячменя за 28.07.2017

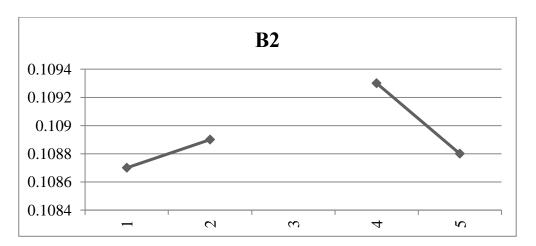


Рисунок 48 — График значений отражения в синем канале посева пшеницы за 28.07.2017

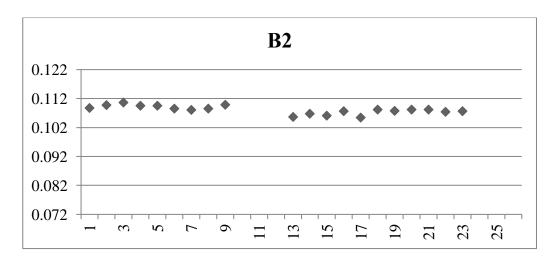


Рисунок 49 — График значений отражения в синем канале посева овса за 04.08.2017

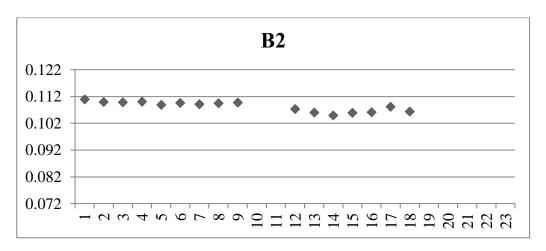


Рисунок 50– График значений отражения в синем канале посева ячменя за 04.08.2017

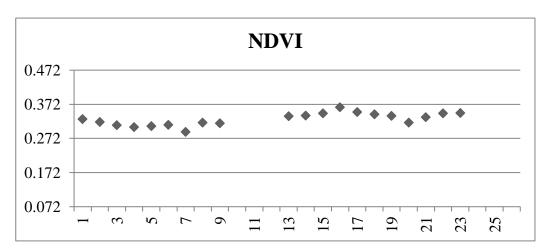


Рисунок 51 – График значений NDVI посева овса за 28.07.2017

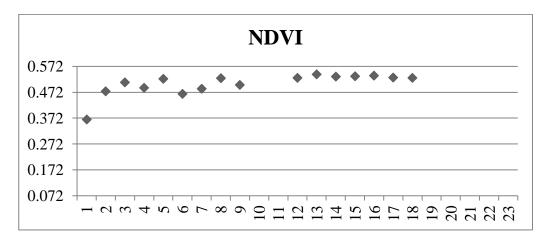


Рисунок $52 - \Gamma$ рафик значений NDVI посева ячменя за 28.07.2017

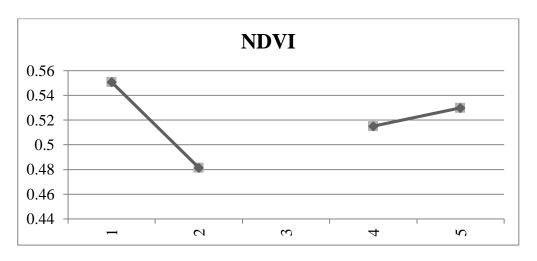


Рисунок 53 – График значений NDVI посева пшеницы за 28.07.2017

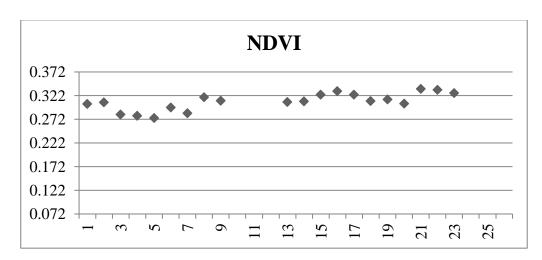


Рисунок $54 - \Gamma$ рафик значений NDVI посева овса за 04.08.2017

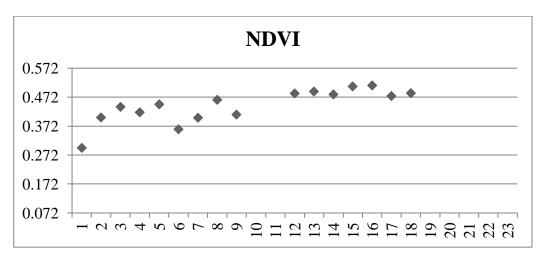


Рисунок 55 – График значений NDVI посева ячменя за 04.08.2017

Для синего и ближнего инфракрасного канала для сравнения была рассчитана дисперсия. Можно сделать вывод, что дисперсия больше на участках с засорением и меньше на чистых участках.

Для сравнения максимальных, минимальных и средних значений чистых участков и участков с засорением в красном канале и максимальных, минимальных значений в зеленом канале были построены графики, представленные на рисунках 56,57.

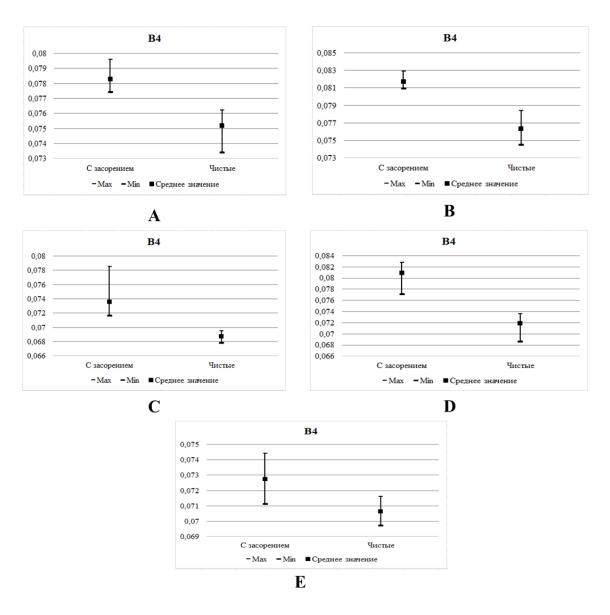


Рисунок 56 — Графики сравнения максимальных, минимальных и средних значений посевов овса, ячменя и пшеницы в красном канале (А — посев овса за 28.07.2017, В — посев овса за 04.08.2018, С — посев ячменя за 28.07.2017, D — посев ячменя за 04.08.2018, Е — посев пшеницы за 28.07.2017)

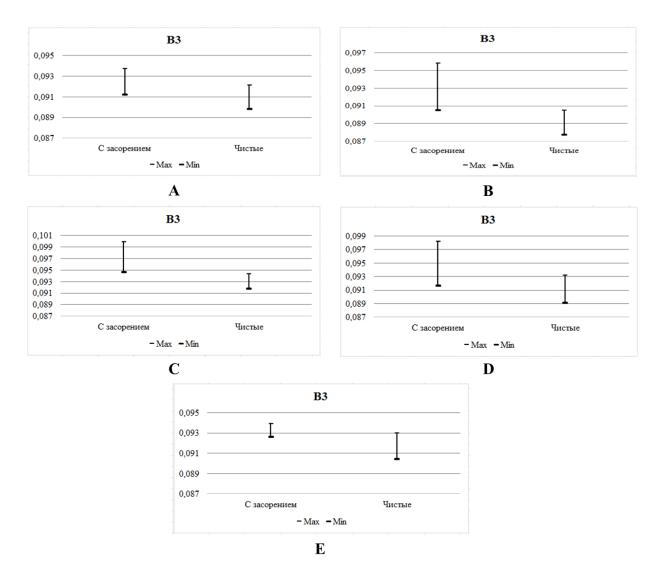


Рисунок 57 — Графики сравнения максимальных и минимальных значений посевов овса, ячменя и пшеницы в зеленом канале (A — посев овса за 28.07.2017, B — посев овса за 04.08.2018, С — посев ячменя за 28.07.2017, D — посев ячменя за 04.08.2018, Е — посев пшеницы за 28.07.2017)

Спутниковые данные за июнь в работе не рассматривались, так как выбранные поля попали под облако, и сделать достоверный анализ нельзя.

Исходя из полученных и обработанных спутниковых данных, на основе наземных данных, можно сделать следующий вывод: используя только значения NDVI, нельзя сделать более точную оценку засоренности сельскохозяйственных посевов, так как значения на чистых участках и участках с засорением очень близки, поэтому для более полного анализа, нужно использовать значения во всех выбранных каналах.

ЗАКЛЮЧЕНИЕ

В заключение проведенного исследования можно сделать следующие основные выводы по теме работы.

В ходе обзора литературы по данной теме, были рассмотрены и проанализированы существующие методы оценки засоренности сельскохозяйственных посевов по спутниковым и наземным данным. Для проведения дальнейшего исследования было выбрано оборудование, спутники и программное обеспечение.

Для сбора наземных данных проводилось полевое спектрометрирование объектов на территории Красноярского НИИСХ ФИЦ КНЦ СО РАН в близи д. Минино в течение периода вегетации 2017 года. После получения наземных данных проводилась их обработка и анализ КСЯ, с помощью построения графиков КСЯ на чистых участках и участках с засорением.

Был проведен сбор, предварительная и тематическая обработка спутниковой информации, полученной в течение 2017 года.

Рассчитав вегетационные индексы участков с засорением и чистых участков на основе обработанных спутниковых данных, сложно судить о степени засоренности посевов, поэтому было принято решение, использовать значения отражения каналов. Значения отражения чистых участков и участков с засорением хорошо отличаются в красном канале. Максимальные, минимальные и средние значения их различны, а диапазоны этих значений не пересекаются. В зеленом канале, можно заметить, что максимальные и минимальные значения тоже различны. Максимальные, минимальные и средние значения в ближнем инфракрасном канале, в синем канале схожи, но отчетливо можно проследить скачи значений. Поэтому для них была рассчитана дисперсия, которая приводит к выводу о том, что дисперсия больше на участках с засорением, чем чистых участках.

На основании проведенного исследования выяснилось, что применение совместного анализа наземных и спутниковых данных, для оценки засоренности агроценозов возможно.

СПИСОК СОКРАЩЕНИЙ

NDVI - Normalized Difference Vegetation Index

ROI – область интереса

SWIR – коротковолновая инфракрасная зона спектра

VNIR – ближняя инфракрасная зона спектра

ВР – высокое разрешение

ГСА – гиперспектральная аппаратура

ИК – инфракрасный

КА – космический аппарат

КСЯ – коэффициент спектральной яркости

ПК – программный комплекс

ПО – программное оъеспечение

СА – съемочная оптико-электронная аппаратура

СР – среднее разрешение

ОЭА – Оптико - электронный комплекс

ШМСА – комплекс широкозахватной мультиспектральной съёмочной аппаратуры

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Шпанев, А.М. Новые подходы к методике учета сорных растений / А.М. Шпанев, П.В. Лекомцев // Защита и карантин растений. 2012. №8. С. 38-41
- 2. Вандышева, Н. М. Мониторинг сельскохозяйственных земель на базе разномасштабных спутниковых данных / Н. М. Вандышева [и др.] // Исследование Земли из космоса. –2003.– №3.– С. 72-84
- 3. Савин, И.Ю. О новом подходе к использованию NDVI для мониторинга состояния посевов сельскохозяйственных культур / И. Ю. Савин, Т. Нэгр // Исселедование Земли из космоса. −2003. –№4. –С. 91-96
- 4. Сидько, А. Ф. Многолетняя база данных спектральной яркости посевов сельскохозяйственных культур в период вегетации измерениям / А. Ф. Сидько, И. Ю. Пугачева, А. П. Шевырногов // Исследование Земли из космоса. −2009.− № 4.− С. 1−7
- Петров, А. Методы борьбы с сорными растениями / А. Петров // Наука в современных условиях: от идеи до внедрения. 2014. № 1. С. 415-418
- 6. Савин, И.Ю. О влиянии засоренности на NDVI посевов ярового ячменя, определяемый по спутниковым данным MODIS / И. Ю. Санив, П. А. Докукин, Ю. И. Вернюк, А. В. Жоголев // Современные проблемы дистанционного зондирования Земли из космоса. 2017. № 7. С. 185-195
- 7. Султангазин У.М. Оценка санитарного состояния сельскохозяйственных угодий с помощью данных дистанционного зондирования / У.М. Султангазин, Н.Р. Муратова, Р. Дорайсвами, А.Г. Терехов // Современные проблемы дистанционного зондирования Земли из космоса. 2004. № 1. С. 286-290
- 8. Малинников, В. А. Учебное пособие для студентов / В. А. Малинников, А. Ф. Стеценк., А.Е. Алтынов, С. М. Попов; М.: Изд. МИИГАиК. УПП «Репрография», 2008 г., 120 с.

- 9. Архипова, О.Е. Оценка засоренности антропогенных фитоценозов на основе данных дистанционного зондирования Земли (на примере амброзии полыннолистной) / О.Е. Архипова, Н.А. Качалина, Ю.В. Тютюнов, О.В. Ковалев // Исследование Земли из космоса. 2014. № 6. С. 15-26
- 10. Программное обеспечение Spectral Evolution [Электронный ресурс]: современные спектрорадиометры, спектрофотометры и спектрометры. Режим доступа: http://spectralevolution.ru/page/.
- 11. ООО НПФ «Индустриальные технологии» [Электронный ресурс]: внедрение новейшего энергоэффективного оборудования и автоматизация технологических процессов. Режим доступа: http://www.itechno.ru/index.php?option=com_content&view=frontpage&Itemid=1
- 12. Spaceflight101 [Электронный ресурс]: Space News and Beyond. Режим доступа: http://www.spaceflight101.net/sentinel-2.html
- 13. Компания «Совзонд» [Электронный ресурс]: ведущий российский интегратор в области геоинформационных технологий и аэрокосмического мониторинга. Режим доступа: https://sovzond.ru/products/spatial-data/satellites/
- 14. Архипов, С.А. Многоспектральная оптико-электронная аппаратура "Геотон" космического аппарата "Ресурс-П" / С.А. Архипов, А.И. Бакланов,
 В.В. Герасименко // Исследование Земли из космоса. 2014 № 2. С. 44-44
- 15. Википедия [Электронный ресурс]: свободная энциклопедия. Режим доступа: https://ru.wikipedia.org/wiki/Pecypc-П
- Архипов, С.А. Гиперспектральная съемочная аппаратура для космического аппарата "Ресурс-П" / С.А. Архипов, А.И. Бакланов, В.М. Линько // Исследование Земли из космоса. 2014 № 3. С. 78-78
- 17. Официальный сайт Научного центра оперативного мониторинга Земли (НЦ ОМЗ) АО «Российские космические системы» [Электронный ресурс]: Данные дистанционного зондирования Земли. Режим доступа: http://www.ntsomz.ru
- 18. Компания «Совзонд» [Электронный ресурс]: ведущий российский интегратор в области геоинформационных технологий и аэрокосмического

мониторинга. – Режим доступа:

https://sovzond.ru/products/software/thematic_processing/envi_platform

- 19. Европейское космическое агентство ESA [Электронный ресурс]: Международная организация. Режим доступа: https://step.esa.int/main/toolboxes/snap/
- 20. Потатуркин, О. И. Методы и технологии обработки мульти- и гиперспектральных данных дистанционного зондирования Земли высокого разрешения. / О. И. Потатуркин, С. М. Борзов, А. О. Потатуркин, С. Б. Узилов // Вычислительные технологии. −2013. −Т. 18, №51.− С. 60-67