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The development of fast, qualitative and quantitative material characterization methods is one 
of the most important current issues in the field of nanosystems metrology. On this evidence it 
seems to be important to conduct a research on the capabilities of multimode resonance imaging 
mode in atomic-force microscopy (AFM) that allows broadening AFM capabilities in quality of 
nanonscale structures metrology and nano-object image quantitative analysis. The subject of 
this paper is modeling of physical phenomena that arise during the creation of such systems that 
describes coherent mechanic and electric phenomena in self-sensing and self-actuating cantilevers 
operating in multi-frequency resonance mode. The outcome of the research is represented by a 
virtual dynamic AFM model that allows understanding the signal generation process in AFM 
control and measuring circuits during sample scanning in multi-frequency mode.
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с пьезорезистивными активными кантилеверами
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Проблема разработки высокоскоростных методов качественной и количественной 
характеризации материалов является одной из важнейших задач метрологии наносистем. В 
связи с этим представляет интерес исследование возможностей многомодового резонансного 
режима атомно-силовой микроскопии (АСМ), позволяющего расширить возможности АСМ 
в направлении повышения качества и достоверности количественного анализа изображений 
наноразмерных структур и нанообъектов. Предметом данной работы является рассмотрение 
вопросов создания динамической модели, описывающей взаимосвязанные механические и 
электрические процессы в саморегистрирующих активных кантилеверах, функционирующих в 
многочастотном резонансном режиме. Итогом работы является компьютерная динамическая 
модель АСМ, позволяющая исследовать процессы формирования сигналов, в управляющем и 
измерительных контурах АСМ при сканировании образцов в многочастотном режиме.

Ключевые слова: атомно-силовой микроскоп (АСМ), нано- и микроэлектромеханические 
системы (НЭМС/МЭМС), нанометрология, саморегистрирующий активный кантилевер, 
термомеханический привод.

Introduction

Since the AFM development thirty years ago [1–3], it became wide known as a high-performance 
tool for surface topography investigation of wide range of samples. Nevertheless the search for the 
optimum methods, which would describe samples properties and structure in the most complete 
way, drives the further development of AFM’s. Methods for better surface visualization (sensitivity 
and resolution), scanning speed, and an ability to provide quantitative analysis of nano-mechanical 
properties and expanding the AFM applicability fields.

The most widely used method now is amplitude modulation method where cantilever resonant 
oscillations are generated at one of its own frequencies (e.g. at the first resonant frequency), while 
surface visualization is operated at a signal stipulated by oscillations amplitude attenuation as a result 
of interaction between a sample and a cantilever tip [4]. Nowadays the multimode mode is one of the 
most prospective ways to broaden the operating modes range, which opens new opportunities for AFM 
application [5–8]. 

The wide used method to measure the deflection of the cantilever customs a laser beam reflected 
from the surface of the cantilever onto a position-photodetector. When the cantilever is bended, the 
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reflected laser light arise the cantilever at a different angle and provides in a measurable vertical shift 
of the laser spot on the detector. This method is called as beam detection.

The paper by Viani demonstrated the use of small cantilevers showing a high sensitivity and was 
used to unfold single molecules using imaging speeds an order of magnitude faster than previously 
performed with conventional cantilevers [9]. However, the use of small cantilever remains a challenging 
task using classical optical read-out techniques.

At the same time, during the surface scanning process tip deflection signal is also detected at 
excitation frequency. The drawback of this approach is the loss of additional useful information about 
sample that is contained in the deflection signal at frequencies that differ from excitation frequencies. 
This problem is overcome in the AFM multimode mode that implies cantilever oscillations generation 
and\or response measurement at one or more frequencies. The received additional information, i.e. 
amplitude, phase and\or frequency response, may be used for both surface visualization with high 
resolution [10–12] and simultaneously extraction of additional information about the sample’s nano-
mechanical properties simultaneously [13, 14].

At the same time, the implementation of AFM multimode methods requires further theoretical 
discussion, as long as force interaction between the cantilever tip and the sample’s surface in 
multimode mode is complex. As a result, experimental capabilities of AFM multimode mode now 
requires its theoretical understanding. In particular, the phase images, obtained with this mode, show 
clearly the detailed structure of the sample, however their physical interpretation is still unclear which 
obstructs a quantitative analysis of sample properties. Therefore, there is an actual need of research 
of measured response interpretation features in AFM multimode mode with considering its features 
and development of model-algorithmic support for near-surface structure properties measurement of 
materials and thin film in the micro- and nano-range.

1. The features of AFM multimode mode hardware implementation

The main measuring ingredient of atomic-force microscope is cantilever – a tiny force sensor in a 
form of cantilevered beam, the free end of which has a tip with sharpness at nano-range on it (Fig. 1).

  
a b 

Fig. 1. Piezoresistive self-actuated cantilever: a – cantilever scheme; b – SEM picture 

 

Probe tip vertical displacement is operated by thermomechanical actuator in form as a 

resistive heater on cantilever surface. The bridge measuring circuit, located on cantilever surface as 

well, is used for measuring the displacement. 

The capability to record additional responses in amplitude, phase and\or oscillation 

frequencies is stipulated by complementing a widely used AFM single-frequency circuit by additional 

generators and synchronous detectors. The described above structural scheme is shown in Fig. 2. 

In the presented scheme oscillation generators are used to excite several (in this case, the 

first three bending) oscillation forms of cantilever by an embedded thermomechanical actuator. A 

piezo-scanner provides cantilever’s displacement relative to the sample along X, Y and Z axis. As 

the cantilever tip approaches to the sample’s surface, the force interaction arises between them, 

which lead to cantilever amplitude attenuation. When the surface profile of the sample changes, the 

force acting on the probe become different as well. Thus, there is amplitude modulation of 

cantilever oscillations by force acting on the probe from the surface. The cantilever mechanical 

response arising at this point is recorded. After that the acquired signal is amplified and sent to 

synchronous detectors inputs, reference signals of which are generator output voltages. This is the 

way to distinguish the envelopes of acquired signals. Then synchronous detectors output voltages 

are sent to the controller, after that they may be used for feedback while scanning the surface and 

may be displayed and recorded. Thus, regardless of the main information (topographic) channel 

cantilever oscillations may be controlled at higher natural frequencies, which allow researching a 

wider range of tip-sample interactions. Due to this, while scanning there is an opportunity to create 

a distribution map of other sample surface local properties, apart from topographic ones. The 

feedback is realized by complementing the scheme with a proportional-integrating link that forms a 

Fig. 1. Piezoresistive self-actuated cantilever: a – cantilever scheme; b – SEM picture
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The self-sensing and self-actuating cantilever allows for much easier system integration and 
significant reduction in its weight. Hence, the microscope provides better controllability for full 
metrological automation and significant higher scan speeds. 

The fabrication and basic characteristics of thermo-mechanically driven cantilevers with integrated 
resistive readout have been described in detail previously [15–17]. In brief: we use Si cantilevers 
300 µm long, 110 µm wide, and 3-4 µm thick. The cantilevers have a piezoresistive Wheatstone-bridge 
positioned on the base of the cantilever and thermomechanical actuator located at near of the tip. 

Probe tip vertical displacement is operated by thermomechanical actuator in form as a resistive 
heater on cantilever surface. The bridge measuring circuit, located on cantilever surface as well, is 
used for measuring the displacement.

The capability to record additional responses in amplitude, phase and\or oscillation frequencies is 
stipulated by complementing a widely used AFM single-frequency circuit by additional generators and 
synchronous detectors. The described above structural scheme is shown in Fig. 2.

In the presented scheme oscillation generators are used to excite several (in this case, the first 
three bending) oscillation forms of cantilever by an embedded thermomechanical actuator. A piezo-
scanner provides cantilever’s displacement relative to the sample along X, Y and Z axis. As the 
cantilever tip approaches to the sample’s surface, the force interaction arises between them, which lead 

Fig. 2. The structural scheme of a multimode AFM. Here fi (i = 1, 2, 3) are excitation frequencies; Ai, φi are canti-
lever oscillation amplitudes measured at excitation frequencies fi

control signal further amplified and sent to Z-electrode of the scanner. At the output proportional-

integrating link the signal is proportional to the sample surface topography height change. Based on 

this, the image of sample surface characteristics is further formed. 

 
Fig. 2. The structural scheme of a multimode AFM. Here fi (i = 1, 2, 3) are excitation frequencies; 

Ai, φi are cantilever oscillation amplitudes measured at excitation frequencies fi 

 

The opportunity of retrieving useful information from the additional data involves the 

necessity of researching mechanisms of informative signals conditioning during the sample surface 

scanning as well as it involves the development of reliable and exact amplitude, phase and 

frequency response interpretations. One of the most efficient solutions for this type of problem is 

simulation modeling. Unlike other methods, e.g. analytic, simulation modelling is able to describe 

functioning of the system almost without limitations in terms of detailing. Matlab Simulink has 

been used for implementation of AFM multi-frequency resonance mode simulation model as it was 

the most appropriate solution in this case. 
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to cantilever amplitude attenuation. When the surface profile of the sample changes, the force acting 
on the probe become different as well. Thus, there is amplitude modulation of cantilever oscillations 
by force acting on the probe from the surface. The cantilever mechanical response arising at this 
point is recorded. After that the acquired signal is amplified and sent to synchronous detectors inputs, 
reference signals of which are generator output voltages. This is the way to distinguish the envelopes 
of acquired signals. Then synchronous detectors output voltages are sent to the controller, after that 
they may be used for feedback while scanning the surface and may be displayed and recorded. Thus, 
regardless of the main information (topographic) channel cantilever oscillations may be controlled at 
higher natural frequencies, which allow researching a wider range of tip-sample interactions. Due to 
this, while scanning there is an opportunity to create a distribution map of other sample surface local 
properties, apart from topographic ones. The feedback is realized by complementing the scheme with 
a proportional-integrating link that forms a control signal further amplified and sent to Z-electrode 
of the scanner. At the output proportional-integrating link the signal is proportional to the sample 
surface topography height change. Based on this, the image of sample surface characteristics is further 
formed.

The opportunity of retrieving useful information from the additional data involves the necessity 
of researching mechanisms of informative signals conditioning during the sample surface scanning 
as well as it involves the development of reliable and exact amplitude, phase and frequency response 
interpretations. One of the most efficient solutions for this type of problem is simulation modeling. 
Unlike other methods, e.g. analytic, simulation modelling is able to describe functioning of the system 
almost without limitations in terms of detailing. Matlab Simulink has been used for implementation 
of AFM multi-frequency resonance mode simulation model as it was the most appropriate solution in 
this case.

The further questions of creating a mathematical description for multi-frequency AFM converters 
and electronic components in the framework of solving the problem of its simulation model creation 
will be carried by the example of AFM with active cantilever produced by the Nanoanalytik GmbH 
Company [18].

2. Cantilever dynamic model

The simplest model describing cantilever displacement (while scanning is one-dimensional model) 
considers cantilever as a resonator with lumped parameters. In case of multi-frequency cantilever 
excitation this model results in a system of n differential equations, as follows:

The further questions of creating a mathematical description for multi-frequency AFM 

converters and electronic components in the framework of solving the problem of its simulation 

model creation will be carried by the example of AFM with active cantilever produced by the 

Nanoanalytik GmbH Company [18]. 

2. Cantilever dynamic model 

The simplest model describing cantilever displacement (while scanning is one-dimensional 

model) considers cantilever as a resonator with lumped parameters. In case of multi-frequency 

cantilever excitation this model results in a system of n differential equations, as follows: 
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where zi is the vertical cantilever tip displacement at the i-th oscillation mode; mi is the cantilever 

effective mass at the i-th oscillation mode; ki is the cantilever stiffness at the i-th oscillation mode; 

ωi is the natural frequency at the i-th oscillation mode ( iii mk=ω ); Fi is the amplitude of the i-th 

excitatory force; φi is the initial phase of the i-th oscillation; ts
iF  is the interaction strength between 

cantilever tip and the sample’s surface at i-th oscillation mode; ci is the damping coefficient of i-th 

oscillation mode: 

i

ii
iiii Q

m
mc

ω
=ζω= 2 , 

where ζi is the relative damping coefficient; Qi is the quality coefficient of the i-th oscillation mode. 

With the aim to transform model (1) to the form that would be more convenient for the 

structural modeling, it is considered rational to describe it as a state space. A dynamic object model 

in the state space is presented as an aggregate of physical variables q1(t), …, qn(t) that determine 

object’s behavior in the further moments of time, on condition that the object’s state at the first 

moment of time and all the applied impacts are known. The connection between input variables 

u1(t), …, un(t), output variables p1(t), …, pn(t) and state variables q1(t), …, qn(t) is represented by 

the first-order differential equations written in matrix form. 

The following variables are introduced as the mentioned above state parameters: 

,	 (1)

where zi is the vertical cantilever tip displacement at the i-th oscillation mode; mi is the cantilever 
effective mass at the i-th oscillation mode; ki is the cantilever stiffness at the i-th oscillation mode; 
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ωi is the natural frequency at the i-th oscillation mode (
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where zi is the vertical cantilever tip displacement at the i-th oscillation mode; mi is the cantilever 
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where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 
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The cantilever frequency characteristics based on the resulting model in accordance with the 

Matlab Simulink parameters given in Table 1, are presented in Fig. 3. 
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where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 
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where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 
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where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 

[ ] .
11
00

 ,
10

 ,)2()1()2(
1

)1(
1 ⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−== i

eff

i

eff

ii
T

nn
m
c

m
kqqqq BAq K  

For complete description of dynamic model the state equation’s dynamic model has to be 

complemented (3) with equations making up a connection between the state variables 
)2()1()2(

1
)1(

1  , ,   , , nn qqqq K  and the output variables p1, …, pn: 

,DuCqp +=  

where p is the output vector, C (m×n) is the output matrix, D (m×r) is the output control matrix. 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000000
000000
000000

 ,01 ,
0

0
 ,

11

DC
C

C
Cp i

nnp

p
OM  

The cantilever frequency characteristics based on the resulting model in accordance with the 

Matlab Simulink parameters given in Table 1, are presented in Fig. 3. 

  

Table 1. Cantilever dynamic model parameters 

Parameter Value  Parameter Value 

Effective mass m1, kg 2.812·10-10  Mechanical quality Q1 134 

Effective mass m2, kg 8.072·10-11  Mechanical quality Q2 253 

Effective mass m3, kg 2.564·10-11  Mechanical quality Q3 286 

Stiffness k1, N/m 53.644  Resonance frequency f1, Hz 69509 

Stiffness k2, N/m 652.913  Resonance frequency f2, Hz 4.527·105 

Stiffness k3, N/m 1541.808  Resonance frequency f3, Hz 1.235·106 

 and the output variables p1, …, pn:

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

≡=

=

≡=

=

dt
dq

dt
tdptq

tptq

dt
dq

dt
tdptq

tptq

nn
n

nn
)1(

)2(

)1(

)1(
11)2(

1

1
)1(

1

)()(

)()(
                

)()(

)()(

L                (2) 

Substituting (2) into (1) results in the following system of equations in state variables:  

u
B

B
q

A

A
BuAqq

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+=

nn 0

0

0

0 11

OO&  (3) 

where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 
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where q is the state vector, u is the vector of input effects, A (n×n) is the system’s state matrix, B 

(n×r) is the control (input) matrix. 
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The cantilever frequency characteristics based on the resulting model in accordance with the 
Matlab Simulink parameters given in Table 1, are presented in Fig. 3.
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Thermomechanical actuator is by design a resistive heater on the cantilever surface of mass 
mh and specific heat ch that initially has resistance Rh0 at ambient temperature T0. When the electric 
current i flows through the conductor with resistance Rh, the power is P. The temperature of the 
conductor rises by ∆T. Power that allocates at conductor’s resistance, depending on overheating 
temperatures (relatively to the initial ambient temperature), is determined by the following 
expression:
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3. Thermomechanical actuator model 

Thermomechanical actuator is by design a resistive heater on the cantilever surface of mass 

mh and specific heat ch that initially has resistance Rh0 at ambient temperature T0. When the electric 

current i flows through the conductor with resistance Rh, the power is P. The temperature of the 

conductor rises by ∆T. Power that allocates at conductor’s resistance, depending on overheating 

temperatures (relatively to the initial ambient temperature), is determined by the following 

expression: 

( ) ( )( )tTRitP h Δ+= β1    0
2 , 

where ( ) ( ) 0    TtTtT −=Δ  is the overheat relatively to the initial temperature, β is the temperature 

coefficient of resistance. 

Then the amount of heat accumulated in the conductor is: 

( ) ( )dttPtQ
t

h ∫ Δ=
0

. 

The defining equation for thermomechanical actuator is the differential equation of heat 
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where T is the heater temperature, t is the time, α is the reduced heat transfer coefficient, S is the 

surface area of the heater, Тс is the ambient temperature. 

Due to the difference between thermal expansion coefficients of cantilever materials (Si – 

the base, Al – metallization) the heat produced by the heater causes mechanical stresses in 

cantilever and, as a result, bending. The displacement d of the tip along the axis Z may be calculated 

by [19]: 
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mh and specific heat ch that initially has resistance Rh0 at ambient temperature T0. When the electric 

current i flows through the conductor with resistance Rh, the power is P. The temperature of the 

conductor rises by ∆T. Power that allocates at conductor’s resistance, depending on overheating 

temperatures (relatively to the initial ambient temperature), is determined by the following 

expression: 

( ) ( )( )tTRitP h Δ+= β1    0
2 , 

where ( ) ( ) 0    TtTtT −=Δ  is the overheat relatively to the initial temperature, β is the temperature 

coefficient of resistance. 

Then the amount of heat accumulated in the conductor is: 
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The defining equation for thermomechanical actuator is the differential equation of heat 

balance: 

( ) )( сhhh TTStQ
dt
dTmc −−= α , 

where T is the heater temperature, t is the time, α is the reduced heat transfer coefficient, S is the 

surface area of the heater, Тс is the ambient temperature. 

Due to the difference between thermal expansion coefficients of cantilever materials (Si – 

the base, Al – metallization) the heat produced by the heater causes mechanical stresses in 

cantilever and, as a result, bending. The displacement d of the tip along the axis Z may be calculated 

by [19]: 
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where T is the heater temperature, t is the time, α is the reduced heat transfer coefficient, S is the 
surface area of the heater, Тс is the ambient temperature.

Due to the difference between thermal expansion coefficients of cantilever materials (Si  – the 
base, Al – metallization) the heat produced by the heater causes mechanical stresses in cantilever and, 
as a result, bending. The displacement d of the tip along the axis Z may be calculated by [19]:
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where L is the cantilever length, ρ is the curvature of the cantilever’s bent axis [19]:
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where r is the curvature radius, bSi and bAl are the width of silicon and aluminum layers, respectively; 
αSi и αAl are the coefficients of silicon and aluminum thermal expansion, respectively; ESi и EAl are the 
silicon and aluminum elasticity modulus.

Then equivalent force developed by the actuator is:

where L is the cantilever length, ρ is the curvature of the cantilever’s bent axis [19]: 
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where r is the curvature radius, b1 and b2 are the width of silicon and aluminum layers, respectively; 

α1 и α2 are the coefficients of silicon and aluminum thermal expansion, respectively; E1 и E2 are the 

silicon and aluminum elasticity modulus. 
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where H is the Hamaker constant, Rtip is the radius of cantilever tip curvature, h = zs + ∆z is the 

distance between the cantilever tip and the sample surface (∆z is the cantilever deflection value, zs is 

the distance between the un-bended cantilever and the sample), a0 is the intermolecular 

(interatomic) distance, E* is the effective modulus of elasticity of the probe-sample system: 
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It is possible to study a sample only due to the variety of powers appearing between the cantilever 
tip and the sample while surface scanning. Depending on the probe-sample distance different forces 
may prevail.

For instance, in the attraction mode (tip moving away from the sample) the prevailing type of 
interaction is Van der Waals force of intermolecular interaction. In the repulsion mode (tip approaching 
to the sample) elastic and inelastic interactions with the sample prevail. The interactions are calculated 
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where H is the Hamaker constant, Rtip is the radius of cantilever tip curvature, h = zs + ∆z is the 

distance between the cantilever tip and the sample surface (∆z is the cantilever deflection value, zs is 
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where H is the Hamaker constant, Rtip is the radius of cantilever tip curvature, h = zs + ∆z is the distance 
between the cantilever tip and the sample surface (∆z is the cantilever deflection value, zs is the distance 
between the un-bended cantilever and the sample), a0 is the intermolecular (interatomic) distance, E* 
is the effective modulus of elasticity of the probe-sample system:

where L is the cantilever length, ρ is the curvature of the cantilever’s bent axis [19]: 
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where H is the Hamaker constant, Rtip is the radius of cantilever tip curvature, h = zs + ∆z is the 

distance between the cantilever tip and the sample surface (∆z is the cantilever deflection value, zs is 

the distance between the un-bended cantilever and the sample), a0 is the intermolecular 
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where Et and Es are the modulus of tip and sample materials elasticity, respectively, νt and νs are 

Poisson's ratios of the tip and the sample materials, respectively. 

 

,	

where Et and Es are the modulus of tip and sample materials elasticity, respectively, νt and νs are Poisson’s 
ratios of the tip and the sample materials, respectively.

5. Measuring circuit model

Responses that come up during the scanning of the sample are recorded by a measuring 
circuit, embedded into the cantilever. The cantilever measuring circuit in the Nanoanalytik 
GmbH company’s atomic-force microscope is formed by the system of four piezoresistors (R1, 
R3 from one side and R2, R4 from the other) with the resistance of 1098 ohms each one. All of 
the piezoresistors are located so that cantilever deformation causes resistance changes, equal in 
absolute value and opposite in sign, in the adjacent shoulders of the bridge. The typical reference 
voltage is V0 = 2.5 V.

At the output of the measuring circuit the measured voltage Vout is proportional to the difference 
of the relative resistances:
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where V0 is the reference voltage applied to the measuring circuit. 

While scanning, the cantilever perceives the external force action F from the surface, 

causing its deflection ∆z: 

zkF Δ= , 

where 3
3
L
EIk =  is the cantilever stiffness. 

It is obvious that the maximum cantilever deflection is observed at the loose end (Y = L 

coordinate): 
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The maximum bending moment for the cantilever under research loaded at the end by the 

concentrated force F appears at the attachment point (Y = 0) and is expressed by:  
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Mechanical stresses from the given load reach the greatest value on its surface Z = ±t1/2 in the 
section where Mmax acts, i.e. in the place where the cantilever is clamped [22]:
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At last, mechanical stresses’ impact on each of the piezoresistors included in the measuring circuit 
with the resistance Ri causes the resistance increment ΔRi:
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where π is the piezoresistive coefficient, the value and the sign of which depend on the resistor’s 
location at the cantilever (the longitudinal piezoresistive coefficient is πl = 70e-11 Pa–1, the transverse 
piezoresistive coefficient is πt = –πl).

The cantilever measuring circuit model created in conformity with the ratio described above is 
presented at Fig. 5.
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as algorithmic blocks, allow switching to a multi-frequency AFM simulation model. The microscope 
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model described by a differential equations system has been implemented by means of Matlab Simulink 
package as a structural scheme (Fig. 6).

As the basis for the model the parameters matching the Nanoanalytik Gmbh company’s atomic-
force microscope cantilever were taken: cantilever length L = 350 μm, cantilever width w = 140 μm, 
aluminum layer thickness tAl = 0.7 μm, silicon oxide layer thickness tSiO2 = 0.5 μm, silicon layer thickness 
tSi  =  2  μm, silicon elasticity modulus ESi  =  170  GPa, aluminum elasticity modulus EAl  =  70  GPa, 
coefficient of aluminum linear expansion αAl = 23.3·10-6  °С-1, coefficient of silicon linear expansion 
αSi = 2.616·10-6 °С-1, temperature coefficient of aluminum resistance βAl = 4.3·10-3 °С–1, heat capacity 
cAl = 753 J/(kg·K), heat capacity cSi = 713 J/(kg·K), radius of cantilever tip Rtip = 20 nm, Poisson’s ratio 
of the tip material vtip = 0.22, thermomechanical actuator resistance Rh0 = 24 Ohm.

Examples of exciting impacts and measuring responses obtained by simulation modeling in 
Simulink are shown in Fig. 7.

Examples of measuring responses to the surface topography in the form of a periodic structure with a 
trapezoidal profile 50 nm high, received after simulation in the Simulink environment, are presented 
in Fig. 8. The envelope A1 of the amplitude modulated signal at the first resonant frequency is used for 
feedback during the scanning of the surface. Second and the third modes of the cantilever provide two 
more channels of extra information A2, ϕ2 and A3, ϕ3. Values plotted on the graphs along the vertical 
axes can give an estimate of the magnitude of informative signals. Noticeable in Fig. 8, c artifacts 
expressed in signals jumps can be attributed to insufficiently accurate setting of the feedback loop 
parameters. Overall, the results indicate that the model correctly reflects the nature of the relationships 
between the input impacts and the response signals and corresponds to theoretical concepts.

Conclusion

In this paper we have presented a model describing the operation of self-actuating and self- sensing 
cantilevers and their mechanical and electrical characteristics. This paper presents also particularly a 
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Fig. 7. Examples of modeling: a – cantilever oscillation electric exciting signal (sum of signals with frequencies 
f1, f2, f3); b – time dependence of the force developed by the thermomechanical actuator; с – vertical displacement 
of cantilever tip
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Fig. 8. Examples of simulation response results: a, с, e – amplitude responses of A1, A2 and A3, 

respectively; b, d, f – phase responses ϕ1, ϕ2 and ϕ3, respectively. The size of field under research is 

15 × 15 μm 

Conclusion 

In this paper we have presented a model describing the operation of self-actuating and self- 

sensing cantilevers and their mechanical and electrical characteristics. This paper presents also 

particularly a dynamical model of the multimode AFM that can be applied for modeling measuring 

responses of the multi-frequency atomic-force microscopy. The model considers the input 

Fig. 8. Examples of simulation response results: a, с, e – amplitude responses of A1, A2 and A3, respectively; b, d, 
f – phase responses ϕ1, ϕ2 and ϕ3, respectively. The size of field under research is 15 × 15 μm

dynamical model of the multimode AFM that can be applied for modeling measuring responses of the 
multi-frequency atomic-force microscopy. The model considers the input parameters in the form of 
surface topography of an arbitrary profile, including the materials with heterogeneity of mechanical 
properties.



– 657 –

Pavel S. Marinushkin, Alexey A. Levitskiy… Dynamic Modeling of Multimode Resonance Measuring Mode…

The developed model allows researching and interpreting the measured responses in the multimode 
mode AFM taking into account its natural features. Also it is of interest as a basis for development 
of model-algorithmic support for measurements of the surface properties of materials and thin film 
structures in micro- and nanoscales using self-sensing and self-actuating cantilevers.
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