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This paper is devoted to the study of the following variable-coefficient parabolic equation in non-divergence
form 9 9
oru — Z a;i(t,x1,22)05u + Z bi(t,x1,x2)0u + c(t, 1, z2)u = f(t, x1, T2),

i=1 i=1
subject to Cauchy-Dirichlet boundary conditions. The problem is set in a non-regular domain of the form

Q= {(t,z1) eER*:0<t<T,¢1(t) <1 <2 (t)} x]0,b[,

where g, k = 1,2 are "smooth" functions. One of the main issues of this work is that the domain
can possibly be mon-reqular, for instance, the singular case where @1 coincides with po for t = 0 is
allowed. The analysis is performed in the framework of anisotropic Sobolev spaces by using the domain
decomposition method. This work is an extension of the constant-coefficients case studied in [15].
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1. Introduction and main results

This work is devoted to the study of the following two-space dimensional non-divergence
parabolic equation

{ Ou+ Lu=felL?Q), a1

1 U|aQ\zT =0,

where
2 2

L=— Z a;i(t, 1, 22)0; + Z bi(t, 1, 12)0; + c(t, 1, 2),
i=1 i=1
0 02
ith 0, = —, 0y = =
w1 2 3x1 I K3 8"1:22 I
@ with the measure dt dridxs, 0Q is the boundary of @, ¥ is the part of the boundary of @
where ¢t = T and the coefficients a;, b;, ¢ = 1,2 and ¢ satisfy non-degeneracy-assumptions (to be

made more precise later). Here @ (see, Fig. 1) is the three-dimensional non-cylindrical domain

i=1,2. L? (Q) stands for the space of square-integrable functions on

Q={(t,z1) ER*:0<t < T, (t) <a1 <¢2(t)} x]0,8[,
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where T and b are positive numbers, ¢ and @9 are two Lipschitz continuous real-valued functions
on [0, 7] satisfying

o (t):=¢@a(t) — 1 (t) >0, Vt €]0,T] and ¢ (0) = 0.

5o 1)
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I
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Fig. 1. The non-regular domain @

Besides being interesting in itself, Problem (1.1) governs, for instance, the concentration of
the biological oxygen demand in water in the case of a river with variable width and constant
depht, see for example, similar problems in [1] and [31]. Also, the particular form of the operator
L helps us to prove the "energy" type estimate of Proposition 2.1 which is essential in proving
the existence of solutions to Problem (1.1).

The difficulty related to this kind of problems (in addition to the presence of variable coeffi-
cients) comes from this singular situation for evolution problems, i.e., 1 is allowed to coincide
with s for t = 0, which prevents the domain @ to be transformed into a regular domain without
the appearance of some degenerate terms in the parabolic equation, see for example Sadallah [30].
On the other hand, we cannot recast such problems in semigroups setting like in [6] and [27].
Indeed, since the initial condition is defined on a measure zero set, then the semigroup generating
the solution cannot be defined.

It is well known that there are two main approaches for the study of boundary value problems
in such non-smooth domains. We can work directly in the non-regular domains and we obtain
singular solutions (see, for example [3,16,18] and [20]), or we impose conditions on the non-regular
domains (and on the coefficients) to obtain regular solutions (see, for example [2,17] and [30]).
It is the second approach that we follow in this work. So, let us consider the anisotropic Sobolev
space

Hy? (@) = {u € H'2(Q) : ulygs, =0},
with
HY?(Q) = {u: Bu, 0w € L*(Q), |a] < 2},
where o
a = (i1,iz) € N? |a| = iy + iz, 0% = 01 0% u.
The space H'? (Q) is equipped with the natural norm, that is
1/2

2 o2
lull 12y = | 10wullT2(q) + Z 10%ul|72(q)

la|<2
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In this paper we prove that Problem (1.1) admits a unique solution u in H'? (Q), under the
following additional assumptions on the smooth differentiable coefficients ¢, a;, b;, i = 1,2 and
on the functions of parametrization g, k=1, 2,

oLt p(t)—0 as t—0, k=1,2, (1.2)

a; > 0 (parabolicity condition)
Qs bia & 8taivaiai € L= (Q) ) i = 17 27

with |a;] <co, [Va;| <ci, [bi] <eo, | <es, aa;> a9 >0 (655 =1, 2), b= by >0, *>dy > 0,
where cg, c1, ¢, 3, a0, by and dy are positive constants.
Our main result is

(1.3)

Theorem 1.1. We assume that @1 and o fulfil the condition (1.2), and the coefficients a;,
bi, i =1, 2, and ¢ fulfil the condition (1.3), then the operator

2 2
L=0 = ai(t,w1,72)0 + »_ bi(t,x1,22)0; + c(t, 21, 22)

i=1 i=1
is an isomorphism from Hy* (Q) into L* (Q).

The case a3 = as = 1, by = by = ¢ = 0, corresponding to the heat operator has been studied
in [15] and [17] both in bi-dimensional and multidimensional cases.

Whereas parabolic equations with variables coefficients in cylindrical domains are well stud-
ied, the literature concerning such problems in non-cylindrical domains does not seem to be
very rich, see [24] for the case of smooth coefficients and [28] for the case of discontinuous co-
efficients. Concerning parabolic equations in time-varying domains we can find in Fichera [9]
and Oleinik [29] solvability results for non-divergence parabolic equations. For the divergence
form case, see [5,14] and [25]. In the case of Holder spaces functional framework, we can find in
Baderko [4] results for non-cylindrical domains of the same kind but which cannot include our
domain. In [10], we can find Wiener type criterion in the framework of continuous spaces which
cannot include our L2-case.

Our work is motivated by the interest of researchers for many mathematical questions related
to non-regular domains. During the last decades and since many applied problems lead directly
to boundary-value problems in "bad" domains, numerous authors studied partial differential
equations in non-smooth domains. Among these we can cite [7,8,11,12,19,21,22,32] and the
references therein.

The organization of this paper is as follows. In Section 2, we divide the proof of Theorem 1.1
into three steps:

a) We prove well-posedness results for Problem (1.1) when @ is replaced by the truncated
domain
Qo = {(t,xl) ER?:a<t< T;o1(t) <1 < gog(t)} x10,0[,
with o > 0, (Theorem 2.1).

b) We approximate @ by a sequence (Q,), n € N*, of such truncated regular domains and
we establish a uniform estimate (see Proposition 2.1) of the type

||U’VIH’HL2(Q,,L) S K Hf||L2(Q) )

where u,, is the solution of Problem (1.1) in @, and K is a constant independent of n.

¢) We build a solution u of Problem (1.1), by considering u,, the 0-extension to @ of the
solutions u, (uy, n € N* exists by Theorem 2.1), and showing (in virtue of Proposition 2.1) that
Up, — u, weakly in L? (Q), for a suitable increasing sequence of integers (ng)x>1.
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Note that this work may be extended at least in the following directions:

1. The function f on the right-hand side of the equation of Problem (1.1), may be taken in
L? (@), p € ]1,00[. The domain decomposition method used here does not seem to be appropriate
for the space L? (Q)) when p # 2. An idea for this extension can be found in [13] or in [23].

2. The bi-dimensional case in x, can be naturally extended to an upper dimension in z, such
as, for example, the following problem

N N
Oyu — Zai(t,xl, ey @N)Oiu + Z bi(t,z1,....,en)0u+ c(t, z1, ..., xn)u = f(t,21,...,ZN),
i=1 i=1

in the domain

{(t,xl,...,a:N) eRVL.0<t<T,0< Vi o+ 23, <<,0(t)}7 N > 2.

These questions will be developed in forthcoming works.

2. Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into three steps.

2.1. Step 1: case of a truncated domain (), which can be transformed
into a parallelepiped

In this subsection, we replace @ by
Qo = {(t,xl) eER?’:a<t< T;01 (1) <21 < o (t)} x 10,0[,
with a > 0, (see, Fig. 2). Thus, we have ¢ («) > 0.

Ia

Fig. 2. The truncated domain @,
We can find a change of variable ¢ mapping ), into the parallelepiped
P, =]a,T[x]0,1[ x]0,b[,
which leaves the variable ¢t unchanged. 1 is defined as follows:
V: Qo — Pa,
(t, @1, 22) —— Y (¢, 21, 22) = (t,y1,y2) = (ta 901—<p1(75),x2> :
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The mapping v transforms the parabolic equation in the domain @, into a variable-coefficient
parabolic equation in the parallelepiped P, . Indeed, the equation

2 2
Oyt — Z a;(t, x1,x2)05u + Z bi(t, 1, x2)0iu + c(t, x1, x2)u = f(t,21,22)
i=1 i=1
in @, is equivalent to the following

2 2
0w — Z ai (t,y1,y2)0iv + Z bi (1, y1,y2)0iv + ¢ (t,y1,y2)v = g(t, Y1, y2)
i=1 =1

in P,, where a; (t,y1,y2), b; (t,y1,y2) and ¢ (¢,y1,y2) are defined by

ar (6 yroy) = (W“’z; (ffl :%2) o yriy) = as (b o (B g1 + 01 (1) 32)
bl (Z—?;:y2) _ bl (t> P (t) Y1 + ©1 (t) 7y2) [1 _ 4,0/ (t) Y — 30/1 (t)] ,

¢ (1)

ba (ty1.y2) = b2 (Lo (W) yr + o1 (8),y2),  c(tyr,y2) =c(te @)y + @1 (). v2),
and
g (t7y1u y2) = f (t7x17x2) , U (tvylu y2) =u (tax17x2) .

Since the functions a;, b;, i = 1,2, ¢ and ¢ are bounded, and using the fact that the mapping 1
is tri-Lipschitz, then, it is easy to check the following
Lemma 2.1. u € H'2(Q,) if and only if v € HV? (P,).

The boundary conditions on v which correspond to the boundary conditions on u are the
following

U|aPa\rT =0,

where I'p is the part of the boundary of P, where ¢ = T In the sequel, the variables (¢, y1,y2)
will be denoted again by (¢, 1, 22) .

Theorem 2.1. The operator

2 2
El - at - Za’i (ta xlaxQ)aii + Z b’L (tvxlva)ai + C(ta xlaxQ)
i=1 =1

is an isomorphism from Hy* (Pa) into L? (P.) , with

Hy? (Pa) = {v € H'2 (Pa) : vlyp, p, =0}

Proof. Since the differentiable coefficients a; (t,z1,22),b; (t,x1,22), i = 1,2 and c(t, 71, 72) are
bounded in P,, the optimal regularity is given by Ladyzhenskaya-Solonnikov-Ural’tseva [24]. O

We shall need the following result in order to justify all the calculus of the next subsection.
Lemma 2.2. The space
{v € H*(P,) : U‘OPPQ = O}
s dense in the space

{v e HY2(Py) - ”|apPa = 0} .

Here, 0,P, is the parabolic boundary of P, and H* stands for the usual Sobolev space defined,
for instance, in Lions-Magenes [26].
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The proof of the above lemma may be found in [15].

Remark 2.1. In Lemma 2.2, we can replace P, by Q. with the help of the change of variable
1 defined above.

2.2. Step 2: uniform estimate

We denote u,, € H'?(Qy,),n € N*, the solution of Problem (1.1) corresponding to a second
member f, = f|, € L?(Q,) in

1
Qn = {(t,xl) ER?: — <t <T,p1(t) <m < o (t)} x 10, 0]
n
Proposition 2.1. There exists a constant K1 independent of n such that

lun sz o,y < K Ifallpzon < K Il

In order to prove Proposition 2.1, we need some preliminary results.
Lemma 2.3. Let Jo, B[ C R. There exists a constant Ko (independent of a and 8 )such that
2

Hw(j)
L2(Ja,B))

< Ka( - 0 |u]

i =0,1,
L2(as)’

for every w € H? (o, B]) N HE (o, B]) , where w9, j =1, 2, denotes the derivative of order j of

w on ]a, B and w® = w.

Lemma 2.4. For every € > 0, chosen such that ¢ (t) < €, there exists a constant Cy independent
of n such that fori=1,2

J

‘au

< OEC 0unllzaiq,y» 7=0, 1,

7 9n

L2(Qn)
where 8}un = O;u,, and afun = Upy,.

Proof. Replacing in Lemma 2.3 w by u, and Jo, B[ by Je1 (t), @2 (t)], for a fixed ¢, we obtain

p2(t) ) 2 ) w2(t)
/ () dar < Ko (o (1)) / (Osstn)? dry <
©

1(t) P1(t)
2(t)

< K262(2_j)/ (aiiun)2 dzy,
w1(t)

with ¢ = 1,2 and j = 0, 1. Integrating in the previous inequality with respect to ¢, then with
respect to xa, we get the desired result with C7 = K. O

Proof of Proposition 2.1. Let us denote the inner product in L? (Q,,) by (.,.), then we have
2

L2(Qn)

2 2
Orr, — > ai(t, x1, 22)0siun + D bi(t, 21, 22)0sun + c(t, x1, T2)Un

=1 i=1

2
1l = \

2 2
2 2 2 2
= ”atun”LQ(Qn) + Zl Haiaii“n”m(Qn) + Zl ”biaiunHL?(Qn) + ”CUHHL?(Qn) -
1= 1=
2

2 2
=23 (Osun, a;Ogun) + 2 Z (Optin, b;Oiun) + 2(O¢un, cuy) — Z (@;O5tp, b1 O up)—

1—1 =1

-1
2
-2 Z (a;0iiUn, baOauuy,) — 2 Z (@;0iitun, ctn) + 2 > (b;Osti, cuy )+
=1
—|—2<a1181lun, a22022Up) — 2<b131un, baOoup,).
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1) Estimation of —2(0;up, a;0iuy,), i =1, 2 : We have
1
Ot Dsiti, = 0 (Dyunditun) — 50 (O5un)” .
Then

_2<6tun7aiaiiun> = _2/ @iatu7zaiiu7zdt d$1dl‘2 -

n

/ a; |:_261 (atunaiun) + 6t (azun)2:| dt d]}ldl‘g =

n

/ a; {(81-11”)2 v — 23tunaiun1/i] do+
0Qn

+/ {2&%1 (8tun81un) — 8tCLii (&un)Q] dt dl’ldl’g,

n

where vy, v;, i = 1,2 are the components of the unit outward normal vector at 9@Q,,. We shall
rewrite the boundary integral making use of the boundary conditions. On the parts of the

boundary of @, where t = —, o = 0 and x5 = b we have u,, = 0 and consequently d;u, = 0.

The corresponding boundary integral vanishes. On the part of the boundary where ¢t = T, we
have v; = 0 and vy = 1. Accordingly the corresponding boundary integral

b re2(T) 9

/ / ai(T,xl,xz) (8Zun) d.’Eld.’EQ
0 Ja(T)

is nonnegative, since a;(T, x1,x2) > 0. On the part of the boundary where z; = ¢ (), k= 1,2,

we have .
-1 t
:—( ) i (1) and vy = 0.

S ) A
VI+ @)@ 1+ (6h)* (0

Consequently, the corresponding boundary integral is

2 ) b T
L= 3 (—1)FHH /O [ ity o (8) 22)0 (8) [Brtn (6, op (£) s 22)] dt divo.

k=1
Furthermore,

dra; (Oyun)? dt doydrs| < o HaiunHiz(Qn) ,

‘ Qn
and for every € > 0

(‘3iai (8tun81un) dt dl‘ldl‘g

‘ < cl/ |Optin | |05t | dt dzqdae <
Qn Qn

€ 2 C1 2
S Gp 10eunllz2(q,) + % [0iunlz2(q,) -
Then for ¢ = 1,2 we have
2 2 C1 2
—2(0¢tn, Ostin) = — [In1il = |In2,i| —c1 HaiunHLQ(Q”)_Cle ||8tun||L2(Qn)_? ||8iu'fbHL2(Q") (2.1)

where

, b T
Ly = (—1)FH / / ailts o (£)  22) 0l (6) [Bitn (£, 01 (1) s 2)]? dt da, k= 1,2.
0 /1
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Lemma 2.5. There exists a positive constant K, independent of n such that

Lkl < Kae|0n1un3q,, k=1, 2,
k2] < Kae ||322un||2L2(Qn) + coe Hﬁmunlliz(%) , k=1, 2,
0%u
here 012U, = L
wnere d12u 8%18302

Proof. We convert the boundary integral I,, 1,1 into a surface integral by setting

z1=p2(t)

_ pt)—a
[alun (t, $1 (t) ’ 3?2)]2 T W [8lun (t7 o m2)}2 z1=¢p1(t)

p2(t) _
,/ ) {‘P? (t) T [alunf} doy =
1 (t) ¢ (t)

p2(t) t) — p2(t) 1
_ 2/ Malun.auun dxy +/ — [(%un}z dxy.
o1 (1) @ (t) ety ()

Then, we have

b T
A / / ar(t, 1 (8), 22), () [rtun (£, 01 (), 22)]? dit dary =
0 /3

_ @1 ()
——/nch(t,(Pl (t),x2) (pl(t)

©2 (t) —T1
+ 2/n al(t, ©®1 (t) ,xg)wwl (t) (alun) (811un) dt d.’Eld.’EQ.

(Brun)? dt daydro+

Thanks to Lemma 2.4, we can write

p2(t) 9 9 p2(t) N
/ [81Un] dl’l < KQQO (t) / [81111,”] dl’l.
@

1(t) p1(t)
Therefore
w2(t) A , p2(t) 5
/ [011n] dr, < K» |<P1|<P/ [O11un]” dx1,
w1 (t) ¥ »1(t)
consequently

[I11] < Kg/ co || w(allun)z dt dxidxy + 2/ co || |O1un| |O11un| dt doydzs,

n n

P2 (t) — 71

e (1)

since < 1. Using the inequality

1
2| run [Or11un| < € (Gr1un)” + = (#1)° (Brun)’

for all € > 0, we obtain

|In’171| < KQ/ [Co ‘(,0/1| %) + 006} (811un)2 dt dl’ldxg + C?O ((pll)2 (81un)2 dt d.’Eld.’EQ.
Q"'L Q’IL
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Lemma 2.4 yields

1 1
E/ (()0,1)2 (alun)Q dt d$1d$2 g KQE / (()0/1)2 @2 (311un)2 dt diI?ldIEQ.

n n

Thus,

1
ol < Ko [ o It 1ol + £ (6 ol (Ourun)®at dondes + [ coc @rvu)* dt donc <

n n

< (2K2 + 1) 606/ (811un)2 dt dxidzs,

n

since |} p| < e. Finally, taking Ky = (2K + 1) ¢g, we obtain

|In,1,1| < K46||(911un”%2(Qn) .
The inequalities
2
il < Kae|0nualiag,)

and
L2l < KaellOounll72(q,) + coe [O12unll72(q, ) k=1, 2

can be proved by a similar method. This ends the proof of Lemma 2.5.
2) Estimation of 2{a1011up, agdxouy) : We have

allun.822un = 81 (81un.822un) — 82 (81un.812un) + (812un)2 .

Then

2(a1811un,a2822un> = 2/ alagauunﬁggun dt diL'ld.’L'Q =

n

= 2/ a1as |:31 (alun.aggun) — 32 (81un.312un) + (algun)Q dt dl‘ldl’g =

n

= 2/ a1as [61un.822unu1 — 6lun.812unu2} do+
BQTL

+ 2/ a1a2 (812un)2 dt d.’Eld.’EQ—

n

-2 81 (alag) . (81un.822un) dt d1‘1d$2+
Qn

+ 2 0o (alag) (alun.(?lgun) dt dx1dzs,
Qn

where 14, v;, i = 1,2 are the components of the unit outward normal vector at 9Q,. We shall
rewrite the boundary integral making use of the boundary conditions. On the parts of the
boundary of @,, where t = —, o = 0 and x2 = b we have u,, = 0 and consequently 0yu, = 0.

The corresponding boundary integral vanishes. On the part of the boundary where ¢t = T, we
have v; = v9 = 0. Accordingly the corresponding boundary integral vanishes. On the part of the
boundary where x1 = ¢ (), k = 1,2, we have 1o = 0, u,, = 0 and consequently dsou,, = 0. The
corresponding boundary integral vanishes. So,

2/ a1a9 [81un.822un1/1 - 81un.812un1/2] do = 0.
0Qn
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Furthermore,

2/ a1a9 (312un) dt d$1d2132 2(10 ||812Un||L2 (Qn) >

n

and for every € > 0

—2 81 (alag) (alun 822’U,n) dt dl’ldl'z ﬁlE ||822unHL2(Q7, ﬁl

I\Blunlle ,
on (Qn)

+2 O (alag) (alun alzun) dt dzidre > 616 ||812’U,n||L2 (Qn) 61

~10vun72q,)
Q’Vl

with (3, is a positive constant. Then, we have

251

2<a13111tn, a2322un> z (2a0—51€) ||812Un||2L2(Qn)_ﬂ1€ H822un||2L?(Qn) ||81u”||L2(Q (22)
It is easy to establish the following estimates.

Lemma 2.6. Set ¢y = coca, ¢5 = cocg and cg = cacs. Then, for every € > 0 we have

2(0¢n, biOiu,) = —eco Hat“n”B(Qn ||8 un||L2(Q y,t=1,2,
2O, cun) > —ecs [0l 3a g, — = lumllZaia
—2(a; 03U, bi.Opuy) = —cye H&‘“unHB(Qn ||8kun||L2(Q X 1=1,2; k=1,2,
—2(a; 04U, Cupn) = —cs€ \|8“un||L2(Qn ||un||L2(Qn) ,1=1,2,
2(biOiun, cun) = —cge HunHLZ(Qn) - ? ”aiun”L?(Qn) )

2(b101Un, b202uy)

\%

b
2 0 2
~boe [[OrtnllL2(q,) = 7 102nlliz(q,)

Now, summing up the estimates (2.1), (2.2) and making use of Lemma 2.5 and Lemma 2.6
then we obtain

2 2 2 1 2
I fullz2(q,) = (1 — ae) 10wunll72 g, + dollunllz2(q,) — @ (6 + E) lunllz2(q,) +

2 2 1 2 2
+ bo( [01unl12(q, )+ ”aQun”Lz(Qn)) - (5 + e) ( [01unll2(q,) +H82un||L2(Q,,,))+

2

+ (a0 — a€) Y Bt 72 (q,) + (200 — Bre — co€) [|9r2unl 12 (g, -
i=1

where « is a positive constant independent of n. Thanks to Lemma 2.4, it follows that for ¢+ = 1,2

—a (et )10l > —a (c+ 1) 1 0utnllaga,y

1 9 1 2
—« (5 + e) [unllze(q,) = —a (6 * €> Cre! 19:inll12 @) -

— 425 —
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Therefore,
2 2 2
[ fnllz2(q,) = (1 — ae) 10wunll12 g, + dollunllz2q,) —

2 2 2 2 2
-« <€+ €> 0164( ||allun||L2(Qn) + ||822unHL2(Qn)) + bO( ||alunHL2(Qn) + H82unHL2(Qn) )_

1 2
(et ) a0l + Il )+
2

+(ao — a€) Y |0itnl 72, + (200 — Bre = coe) [|O12tin 72,y (23)
=1

which implies
2 2 2 2 2
1fallz2,y = (1 —ae) [0wnllzzg,) + do lunllzzg,) + bo(101unllz2q,) + 102unll2(q,) )+
+ (ap — ae — aCy (€2 4+ €) — aCy (€’ + €%)) ( ||811un||2LQ(Qn) + ||822un|\%2(Qn) )+
+(2a0 — Bre — coe) [Drattnl| 72, -
Then, it is sufficient to choose € verifying
(1—ae) >0, (2a0— Bie—coe) >0 and (ag — ae — aCy (€’ +€) — aCi(e’ + €*)) > 0
to get a constant Ky > 0 independent of n such that

”fn”L?(Qn) = Ko Hu"HHl’z(Qn) ’

and since
1foll2gny < Ifllz2) »

there exists a constant K7 > 0, independent of n satisfying
||“n||H112(Qn) <K ||anL2(Qn) S K ||f||L2(Q) :

This completes the proof of Proposition 2.1. O

2.3. Step 3: passage to the limit

Choose a sequence @, n = 1,2,... of reference domains (see the above subsection) such
that Q, C Q. Then we have @,, — @, as n — oo. Consider the solution u,, € H'2(Q,,) of the
Cauchy-Dirichlet problem

2 2
Oty — Y ai(t, 1, 2) 05U + Y bi(t, 21, 22)un + c(t, 21, 22)un = [ in Qn,
i=1 i=1
tnlog,~z, =0
Such a solution wu,, exists by Theorem 2.1. Let u, the 0-extension of u, to Q. In virtue of
Proposition 2.1, we know that there exists a constant C' such that

@ lls20,) C 1l 2oy -

This means that wu,, 55;, 8/“\1;, for 1 < |a| < 2 are bounded functions in L? (Q). So, for a
suitable increasing sequence of integers ng, k = 1,2, ..., there exist functions

u, v and vy, 1< |a| <2
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in L? (Q) such that

U, — u weakly in L? (Q), k — oo,

Oy, — v weakly in L? (Q), k — oo,

0%u,, — v, weakly in L?(Q), k — oo,

1 < |a] € 2. Clearly,
v =0, Vo = 0%, 1< |a| <2

in the sense of distributions in Q, then in L% (Q). So, u € H'? (Q) and

2 2

Oyt — Z a;(t,x1,x2)0;u + Z bi(t, 1, x2)0iu + c(t, z1,z2)u = f in Q.

i=1 i=1

On the other hand, the solution u satisfies the boundary conditions u| a0-x, = 0, since
vn € N*, ulg = un.

This proves the existence of a solution to Problem (1.1). Notice that we have the estimate

Hu||’;-[1-2(Q) <K Hf||L2(Q) )
which implies the uniqueness of the solution.

Remark 2.2. If 1 (0) < 2 (0) and @1 (T') = @2 (T'), then the result given in Theorem 1.1 holds
true under the assumption

o)) =0 as t =T, k=1,2
instead of hypothesis (1.2).

The authors want to thank the anonymous referee for a careful reading of the manuscript and
for his/her helpful suggestions.
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O nmHeitHOM mapaboJIMYecKOM ypaBHEHUHN BTOPOTO IOPSIKA
C TIepeMeHHbIMU KO3dPuimeHTaMu B HeperyJIsapHOil

obaactu R?

®eppoan Bynkoan

DakyJIbTeT €CTECTBEHHBIX HAYK U YKU3HU

Yuusepcurer Bemxkaita, 6000, Bemxkaiia

Axup

Apesku Kenydn

DakyJsIbTeT TEXHOJIOIMH, JIa0. MPUKJIIA/IHON MAaTEeMATHKH
Yuusepcurer Bemxkaita, 6000, Bemxkaiia

Axup

Hacmoawaa paboma noceau,ena usy4eruto caedyioueeo napabosuieckozo YpasHerus ¢ nepemerHvimi
Koappuyuenmamu 6 nedusepeenmrol popme:

2 2

Oy — Zai(t,wl,m)&-iu + Zbi(t,xl,m)@iu + c(t, x1,x2)u = f(t, 21, 22),

i=1 i=1

¢ yuemom eparusnoir yeaosuti Kowu-upuzxae. 3adayua 3adana 6 Hepeeysaprot obaacmu 6uda

Q={(t,x1) ER*: 0 <t < T, 1 (t) <z1 < p2(t)} x]0,b],

2de v, k = 1,2 asasomca aaadkumu Gyrkuyuamu. O0mol us ocrosHuix 3aday amot pabomovl cay-
otcum mo, wmo obaacms moocem 6vims wepe2yaaphot, nanpumep, donyckaemcs ocobuill caywal, Ko2da
p1 cosnadaem c p2 npu t = 0. Anaaus nposodumcs 6 pamrar anudomponnux npocmparcme Cobone-
64 C UCMOAD30BAHUEM MEMOJa 0eKOMNO3UYUY 0baacmel. Ima paboma ABAAEMCH 0000ULEHUEM CAYHAA,
nocmoarnux Koapduyuenmos, usyuaemozo 6 [15].

Karoueswie caosa: napabosuveckue ypasHeHus, HepeysapHbie obaacmu, nepementvie Koaphuyuernmaot,
anuzomponnwie npocmparcmea Cobosesa.
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