# On Generation of the Group $\operatorname{PSL}_{\mathbf{n}}(\mathbb{Z}+\mathbf{i} \mathbb{Z})$ by Three Involutions, Two of Which Commute 

Denis V.Levchuk*<br>Institute of Mathematics, Siberian Federal University, av. Svobodny 79, Krasnoyarsk, 660041,<br>Russia<br>Yakov N.Nuzhin ${ }^{\dagger}$<br>Institute of Fundamental Development, Siberian Federal University, st. Kirenskogo 26, Krasnoyarsk, 660074,<br>Russia

Received 20.01.2008, received in revised form 20.03.2008, accepted 05.04.2008
$\overline{\text { It is proved that the projective special linear group } \operatorname{PS} L_{n}(\mathbb{Z}+i \mathbb{Z}), n \geqslant 8 \text {, over Gaussian integers }}$ $\mathbb{Z}+i \mathbb{Z}$ is generated by three involutions, two of which commute.

Keywords: gaussian intergers, special linear group, generating elements.

## Introduction

The main result of the paper is the following theorem.
Theorem 1. For $n \geqslant 8$ the projective special linear group $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$ over Gaussian integers $\mathbb{Z}+i \mathbb{Z}$ is generated by three involutions, two of which commute, but for $n=2,3$ it is not generated by such three involutions.

The groups generated by three involutions, two of which commute, will be called $(2 \times 2,2)$ generated. Here we do not exclude the cases when two or even three involutions are the same. Clearly, if a group has a homomorphic image, which is not $(2 \times 2,2)$-generated, then it will not be $(2 \times 2,2)$-generated. Since there exist the homomorphism of $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$ onto $P S L_{n}(9)$ then the assertion of the Theorem 1 arises from the fact that the groups $P S L_{2}(9)$ and $P S L_{3}(9)$ are not $(2 \times 2,2)$-generated (see [1]). For $n \geqslant 8$ generating triples of involutions, two of which commute, of the group $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$ are indicated explicitly. It moreover $n \neq 2(2 k+1)$ then we take generating triples of involutions from $S L_{n}(\mathbb{Z}+i \mathbb{Z})$. Thus, for $n \geqslant 8$ and $n \neq 2(2 k+1)$ we have a stronger statement: the group $S L_{n}(\mathbb{Z}+i \mathbb{Z})$ is $(2 \times 2,2)$ generated. Earlier, Ya.N.Nuzhin proved that $\operatorname{PS} L_{n}(\mathbb{Z})$ is $(2 \times 2,2)$-generated if and only if $n \geqslant 5$. In the proof of Theorem 1 the methods of choosing generating triples of involutions developed in [2] are essentially used. Note also that M.C.Tamburini and P.Zucca [3] proved $(2 \times 2,2)$-generation of the group $S L_{n}(\mathbb{Z})$ for $n \geqslant 14$.

[^0]
## 1. Notations and Preliminary Results

Througout the paper $\mathbb{Z}$ are integers and $\mathbb{Z}+i \mathbb{Z}$ are Gaussian integers, where $i^{2}=-1$. The rings $\mathbb{Z}$ and $\mathbb{Z}+i \mathbb{Z}$ are Euclidean rings. Let $R$ be an arbitrary Euclidean ring.

As usually, we will denote by $t_{i j}(k), k \in R, i \neq j$, the transvections, that is, the matrices $E_{n}+k e_{i j}$, where $E_{n}$ is the identity $(n \times n)$ matrix, and $e_{i j}$ denotes the $(n \times n)$ matrix with $(i, j)$-entry 1 and all other entries 0 . The set $t_{i j}(R)=\left\{t_{i j}(k), k \in R\right\}$ is a subgroup.

The following lemma is well-known (see, for example, ([4], p.107)).
Lemma 1. The group $S L_{n}(R)$ is generated by the subgroups $t_{i j}(R), i, j=1,2, \ldots, n$.
Let

$$
\tau=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & 1 \\
0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & \ldots & 1 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & \ldots & 0 & 0 & 0
\end{array}\right), \mu=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right) .
$$

The matrix $\tau$ is an involution, and the matrix $\mu$ has the order $n$ and acts regularly on the following set of subgroups:

$$
M=\left\{t_{1 n}(R), \quad t_{i+1 i}(R), \quad i=1,2, \ldots, n-1\right\}
$$

Commuting among themselves subgroups of the set $M$, we can get all subgroups $t_{i j}(R)$. Hence, by lemma 1 the group $S L_{n}(R)$ is generated by the set $M$. Moreover, the following lemma is true.

Lemma 2. The group $S L_{n}(R)$ is generated by one of the subgroups

$$
t_{1 n}(R), \quad t_{i+1 i}(R), \quad t_{n-1 n}(R), \quad t_{i i+1}(R), \quad i=1,2, \ldots, n-1
$$

and the monomial matrix $\eta \mu$ for any diagonal matrix $\eta$ with $\eta \mu \in S L_{n}(R)$.
For elements of $P S L_{n}(R)$ we will be also using matrix representation, assuming that two element are equal if they only differ by multiplication with a scalar matrix of $S L_{n}(R)$. In the next sections for elements of the groups $S L_{n}(R)$ and $P S L_{n}(R)$ we will also be using the teminology of Chevalley groups, consedering $S L_{n}(R)$ and $P S L_{n}(R)$ as universal and adjoint Chevalley group respectivelly.

Let $\Phi$ be a root system of type $A_{l}$ with the basis

$$
\Pi=\left\{r_{1}, r_{2}, \ldots, r_{l}\right\}
$$

where

$$
l=n-1
$$

The Chevalley group $A_{l}(R)$ (universal and adjoint) of type $A_{l}$ over ring $R$ is generated of root subgroups

$$
X_{r}=\left\{x_{r}(t), t \in R\right\}, r \in \Phi
$$

where $x_{r}(t)$ are root elements.
For any $r \in \Phi$ and $t \neq 0$ we set

$$
n_{r}(t)=x_{r}(t) x_{-r}\left(-t^{-1}\right) x_{r}(t), \quad n_{r}=n_{r}(1), \quad h_{r}(-1)=n_{r}^{2}
$$

The map

$$
t_{i+1 i}(t) \rightarrow x_{r_{i}}(t), \quad i=1,2, \ldots, l, \quad t \in R
$$

is extended up to isomorphism of the group $S L_{n}(R)$ onto universal Chevalley group $A_{l}(R)$. The monomial matrices $\tau$ and $\mu$ indicated above are preimages of the elements $w_{0}$ and $w$ respectively from the Weyl group $W$ under natural homomorphism of the monomial subgroup $N$ onto $W$, where $w_{0}(r) \in \Phi^{-}$for any $r \in \Phi^{+}$and

$$
w=w_{r_{1}} w_{r_{2}} \ldots w_{r_{l}}
$$

Here $\Phi^{+}$are the positive roots and $\Phi^{-}$are negative roots. We can reformulate of Lemma 2 in terms of Chevalley groups.

Lemma 3. The Chevalley group $A_{l}(R)$ is generated by any root subgroup

$$
X_{ \pm r_{i}}, \quad r_{i} \in \Pi, \quad X_{ \pm\left(r_{1}+\cdots+r_{l}\right)}
$$

and the monomial element $n_{w}$ if $w=w_{r_{1}} w_{r_{2}} \ldots w_{r_{l}}$.
Througout the paper we use the notation $a^{b}=b a b^{-1}, \quad[a, b]=a b a^{-1} b^{-1}$.

## 2. Generating Triples of Involutions

Let $\tau$ and $\mu$ be as in the first paragraph. The matrices $\tau$ and

$$
\tau \mu=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & \ldots & 1 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right)
$$

are involutions, but they do not necessarity belong to $S L_{n}(\mathbb{Z})$ (this depends on their size). We select diagonal matrices $\eta_{1}$ and $\eta_{2}$ with elements $\pm 1$ such that the matrices $\eta_{1} \tau$ and $\eta_{2} \tau \mu$ belong to $S L_{n}(\mathbb{Z})$ and their images in $P S L_{n}(\mathbb{Z})$ are involutions. We take $\eta_{1}, \eta_{2}$ to be the following matrices:

$$
\begin{aligned}
& \text { for } n=4 k+1 \quad(=5,9, \ldots) \\
& \qquad \eta_{1}=\eta_{2}=E_{n} \\
& \text { for } n=2(2 k+1)+1 \quad(=7,11, \ldots)
\end{aligned}
$$

$$
\eta_{1}=-E_{n}, \quad \eta_{2}=E_{n}
$$

```
for }n=4k\quad(=8,12,\ldots
```

$$
\eta_{1}=E_{n}, \quad \eta_{2}=\operatorname{diag}\left(E_{n-1},-1\right) ;
$$

for $n=2(2 k+1) \quad(=6,10, \ldots)$

$$
\eta_{1}=\operatorname{diag}\left(-E_{2 k+1}, E_{2 k+1}\right), \quad \eta_{2}=E_{n}
$$

Further for the group $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$ we explicitly write down triples of generating involutions $\alpha, \beta, \gamma$, two of which commute. For odd $n \geqslant 7$ by definition

$$
\begin{aligned}
& \alpha=t_{21}(i) t_{n-1 n}(i) \operatorname{diag}\left(1,-1,-1, E_{n-6},-1,-1,1\right) \\
& \beta=\eta_{1} \tau \\
& \gamma=\eta_{2} \tau \mu .
\end{aligned}
$$

For even $n \geqslant 6$ by definition

$$
\begin{aligned}
& \alpha=t_{21}(1) t_{n-1 n}(-1) \operatorname{diag}\left(1,-1,-1, E_{n-6},-1,-1,1\right) \\
& \beta=\operatorname{diag}(i,-i, 1, \ldots, 1) \eta_{1} \tau \operatorname{diag}(-i, i, 1, \ldots, 1) \\
& \gamma=\eta_{2} \tau \mu .
\end{aligned}
$$

The next lemma is verified by direct calculation.
Lemma 4. Let $\alpha, \beta, \gamma$ are search as above. Then:

1) $\alpha \beta=\beta \alpha$;
2) $\alpha, \gamma$ are involutions from $S L_{n}(\mathbb{Z}+i \mathbb{Z})$ (and hence in $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$ );
3) $\beta$ is involution from $S L_{n}(\mathbb{Z}+i \mathbb{Z})$ if $n \neq 2(2 k+1)$;
4) if $n=2(2 k+1)$, then $\beta^{2}=-E_{n}$ and hence image $\beta$ is involution in $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$.

In Sections 3 and 4 we prove that involutions $\alpha, \beta, \gamma$ generate the group $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$, $n \geqslant 8$, for odd and even $n$ respectively. Further the next remark will be useful. By the construction

$$
\beta \gamma=\eta_{3} \mu
$$

for some diagonal element $\eta_{3} \in P S L_{n}(\mathbb{Z}+i \mathbb{Z})$. Therefore by Lemma 2 the proof of Theorem 1 can be reduced to verification of the hypothesis of the next lemma.

Lemma 5. If a group is generated by involutions $\alpha, \beta, \gamma$ and contains one of the subgroups

$$
t_{1 n}(\mathbb{Z}+i \mathbb{Z}), \quad t_{i+1 i}(\mathbb{Z}+i \mathbb{Z}), \quad t_{n-1 n}(\mathbb{Z}+i \mathbb{Z}), \quad t_{i i+1}(\mathbb{Z}+i \mathbb{Z}), \quad i=1,2, \ldots, n-1
$$

(in terminology of Chevalley groups one of root subgroups $X_{ \pm r_{i}}, r_{i} \in \Pi, X_{ \pm\left(r_{1}+\cdots+r_{l}\right)}$,) then it coincides with the group $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$.

## 3. Proof of Theorem 1 for Odd $\mathbf{n} \geqslant 9$

Let $\alpha, \beta, \gamma, \tau, \mu, \eta_{1}, \eta_{2}, \eta_{3}$ be as in sections 1 and $2, n \geqslant 9$ and $l=n-1$. In terminology of Chevalley groups

$$
\begin{aligned}
& \alpha=x_{r_{1}}(i) x_{-r_{l}}(i) h_{r_{2}}(-1) h_{r_{l-1}}(-1) \\
& \beta=\eta_{1} \tau=n_{w_{0}} \\
& \gamma=\eta_{2} \tau \mu=n_{w_{0}} n_{w} \\
& \eta \equiv \beta \gamma=n_{w}
\end{aligned}
$$

where $w=w_{r_{1}} w_{r_{2}} \ldots w_{r_{l}}$.
Direct calculations give that

$$
\begin{gathered}
\alpha^{\eta}=x_{r_{2}}( \pm i) x_{r_{1}+\cdots+r_{l}}( \pm i) h_{r_{3}}(-1) h_{r_{l}}(-1), \\
\alpha^{\eta^{2}}=x_{r_{3}}( \pm i) x_{-r_{1}}( \pm i) h_{r_{4}}(-1) h_{r_{1}+\cdots+r_{l}}(-1), \\
{\left[\alpha, \alpha^{\eta}\right]=x_{r_{1}+r_{2}}( \pm 1) x_{r_{1}+\cdots+r_{l-1}}( \pm 1),} \\
\left(\left[\alpha, \alpha^{\eta}\right] \alpha^{\eta^{2}}\right)^{2}=x_{r_{1}+r_{2}+r_{3}}( \pm i) x_{r_{2}}( \pm i) x_{r_{2}+r_{3}}( \pm 1) x_{r_{2}+\cdots+r_{l-1}}( \pm i), \\
\equiv\left(\left(\left[\alpha, \alpha^{\eta}\right] \alpha^{\eta^{2}}\right)^{2}\right)^{\eta}=x_{r_{2}+r_{3}+r_{4}}( \pm i) x_{r_{3}}( \pm i) x_{r_{3}+r_{4}}( \pm 1) x_{r_{3}+\cdots+r_{l}}( \pm i), \\
{\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]=x_{r_{1}+r_{2}+r_{3}}( \pm i) x_{r_{1}+r_{2}+r_{3}+r_{4}}( \pm 1) x_{r_{1}+\cdots+r_{l}}( \pm i),} \\
{\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]=x_{r_{1}+\cdots+r_{l-1}}( \pm 1),} \\
{\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]^{\beta}=x_{-r_{2}-\cdots-r_{l}}( \pm 1),} \\
{\left[\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right],\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]^{\beta}\right]=x_{r_{1}}( \pm i) .}
\end{gathered}
$$

Taking sequentially $(l-1)$-commutator of the elements

$$
x_{r_{1}}( \pm i), x_{r_{1}}( \pm i)^{\eta}=x_{r_{2}}( \pm i), x_{r_{2}}( \pm i)^{\eta}=x_{r_{3}}( \pm i), \ldots, x_{r_{l-1}}( \pm i)^{\eta}=x_{r_{l}}( \pm i)
$$

we get the element $x_{r_{1}+\cdots+r_{l}}( \pm 1)$. On the other hand, $\left(x_{r_{l}}( \pm i)^{\eta}\right)^{\beta}=x_{r_{1}+\cdots+r_{l}}( \pm i)$.
All root subgroups $X_{r}$ are commutative and, evidently, the elements 1 and $i$ generate additively all ring $\mathbb{Z}+i \mathbb{Z}$. Therefore, if a subgroup is generated by involutions $\alpha, \beta, \gamma$, then it contains the root subgroup $X_{r_{1}+\cdots+r_{l}}$ and hence by Lemma 5 it coincides with the subgroup $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$.

Note, that for even $n$ these generating involutions $\alpha, \beta, \gamma$ do not generate $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$, since by conjugating by diagonal element

$$
\operatorname{diag}(1, i, 1,1, i, 1,1, \ldots, i, 1,1, i)
$$

the subgroup generated by these involutions, we only get the group $P S L_{n}(\mathbb{Z})$.

## 4. Proof of Theorem 1 for Even $n \geqslant 8$

Let $\alpha, \beta, \gamma, \tau, \mu, \eta_{1}, \eta_{2}, \eta_{3}$ be as in paragraphs 1 and $2, n \geqslant 8$ and $l=n-1$. In terminology of Chevalley groups

$$
\begin{aligned}
\alpha & =x_{r_{1}}(1) x_{-r_{l}}(-1) h_{r_{2}}(-1) h_{r_{l-1}}(-1), \\
\beta & =\operatorname{diag}(i,-i, 1, \ldots, 1) \eta_{1} \tau \operatorname{diag}(-i, i, 1, \ldots, 1)=h_{r_{1}}(i) n_{w_{0}} h_{r_{1}}(-i)=h_{r_{1}}(i) h_{r_{l}}(i) n_{w_{0}} \\
\gamma & =\eta_{2} \tau \mu=n_{w_{0}} n_{w}, \\
\eta & \equiv \beta \gamma=h_{r_{1}}(i) h_{r_{l}}(i) n_{w}, \\
\text { где } w & =w_{r_{1}} w_{r_{2}} \ldots w_{r_{l}} .
\end{aligned}
$$

Direct calculations give that

$$
\begin{gathered}
\alpha^{\eta}=x_{r_{2}}( \pm i) x_{r_{1}+\cdots+r_{l}}( \pm 1) h_{r_{3}}(-1) h_{r_{l}}(-1), \\
\alpha^{\eta^{2}}=x_{r_{3}}( \pm i) x_{-r_{1}}( \pm 1) h_{r_{4}}(-1) h_{r_{1}+\cdots+r_{l}}(-1), \\
{\left[\alpha, \alpha^{\eta}\right]=x_{r_{1}+r_{2}}( \pm i) x_{r_{1}+\cdots+r_{l-1}}( \pm 1),} \\
\left(\left[\alpha, \alpha^{\eta}\right] \alpha^{\eta^{2}}\right)^{2}=x_{r_{1}+r_{2}+r_{3}}( \pm 1) x_{r_{2}}( \pm i) x_{r_{2}+r_{3}}( \pm 1) x_{r_{2}+\cdots+r_{l-1}}( \pm 1), \\
\theta \equiv\left(\left(\left[\alpha, \alpha^{\eta}\right] \alpha^{\eta^{2}}\right)^{2}\right)^{\eta}=x_{r_{2}+r_{3}+r_{4}}( \pm i) x_{r_{3}}( \pm i) x_{r_{3}+r_{4}}( \pm 1) x_{r_{3}+\cdots+r_{l}}( \pm i), \\
{\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]=x_{r_{1}+r_{2}+r_{3}}( \pm 1) x_{r_{1}+r_{2}+r_{3}+r_{4}}( \pm i) x_{r_{1}+\cdots+r_{l}}( \pm 1),} \\
{\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]=x_{r_{1}+\cdots+r_{l-1}}( \pm 1),} \\
{\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]^{\beta}=x_{-r_{2}-\cdots-r_{l}}( \pm 1),} \\
{\left[\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right],\left[\alpha,\left[\theta,\left[\alpha, \alpha^{\eta}\right]\right]\right]^{\beta}\right]=x_{r_{1}}( \pm 1) .}
\end{gathered}
$$

Taking sequentially $(l-1)$-commutator of the elements

$$
\begin{gathered}
x_{r_{1}}( \pm 1), x_{r_{1}}( \pm 1)^{\eta}=x_{r_{2}}( \pm i), x_{r_{2}}( \pm i)^{\eta}=x_{r_{3}}( \pm i), \ldots, x_{r_{l-3}}( \pm i)^{\eta}=x_{r_{l-2}}( \pm i) \\
x_{r_{l-2}}( \pm i)^{\eta}=x_{r_{l-1}}( \pm 1), x_{r_{l-1}}( \pm 1)^{\eta}=x_{r_{l}}( \pm 1)
\end{gathered}
$$

we get the element $x_{r_{1}+\cdots+r_{l}}( \pm i)$. On the other hand, $\left(x_{r_{l}}( \pm 1)^{\eta}\right)^{\beta}=x_{r_{1}+\cdots+r_{l}}( \pm 1)$.
Therefore, if a subgroup is generated by the involutions $\alpha, \beta, \gamma$, then it contains the root subgroup $X_{r_{1}+\cdots+r_{l}}$ and hence by Lemma 5 it coincides with subgroup $P S L_{n}(\mathbb{Z}+i \mathbb{Z})$.

This work has been supported by the RFFI Grant №07-01-00824.

## References

[1] Ya.N.Nuzhin, Generating triples of involutions of the groups of Lie type over finite field of odd characteristic. II, Algebra i Logika, 36(1997), №4, 422-440 (Russian).
[2] Ya.N.Nuzhin, On generation of the group $P S L_{n}(\mathbb{Z})$ by three involutions, two of which commute, Vladikavkazskii math. journal, 10(2008), №1, 42-49 (Russian).
[3] M.C.Tamburini, Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute, J. of Algebra, 195(1997), №4, 650-661.
[4] R.Steinberg, Lectures on Chevalley groups, M.: Mir, 1975 (Russian).


[^0]:    *e-mail: dlevchuk82@mail.ru
    ${ }^{\dagger}$ e-mail: nuzhin@fipu.krasnoyarsk.edu
    (c) Siberian Federal University. All rights reserved

