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ABSTRACT 

Over the last decades, we have seen several policy models, 

including role-based access control and more recently, certificate-

base control. These models are based on the important notion 

“flow relation”. In this work, we present a logical language of 

certificate-based access control. Our model presents the formal 

method of reasoning for discretionary access and defines logic to 

express a discretionary policy. We introduce, instead, material 

implication widely used in mathematics, and we show in a case 

study its ease in every sense. We find it allows the policy 

specifications to be interpreted more conveniently by practitioners 

and implemented in a simple way. Our evaluation shows that 

policies defined with material implication can be used for creation 

of the specification of a trust relationships policy and for checking 

safety of any computer system. 
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1. INTRODUCTION 

Monitoring of access is understood as methods or mechanisms 

which define whether the request for access to any resource shall 

be resolved or forbidden. It is known that each distributed access 

control system should contain an information protection 

subsystem, which must be based on precisely defined 

mathematical models for controlling access to this information.  

In our article we propose the flow-based logic model for 

interpreting the basic events and properties of the distributed 

access control systems. Our goal is to develop the logic and the 

formal language that can be used for making a security policy 

specification and for checking any computer system security. We 

can prove some important properties of this logic and show on a 

case study how our logical language can express some access 

control policies proposed so far. This can be achieved with 

introducing certificates. The certificate-based access control is 

aimed at specifying security policies for access to resources from 

untrusted sources, e.g. via the Internet. 

Recently, the work on logic-based access models and certificate-

based authorization has been intensified. Formal reasoning 

techniques on security models and access policy specifications 

have been presented, e.g. [1 5]. These models are usually based 

on the modal logic and cannot be automated in a simple way. The 

logic-based approaches generally fail to directly map to an 

implementation and are not easily interpreted by practitioners. It is 

intuitively clear that a system with total security is a system that 

does not allow the information flows among its users. Thus, the 

system is called safe under a certain policy if all its transactions 

are confirmed with an ideal security system, except for permitted 

in policy. 

 

2.  LOGICAL MODEL 
It is known that the permitted flow of information in a system can 

naturally be represented as a lattice-ordered set, (S, ), where S is 

a given  set of security  classes  and « » is a flow relation 

specifying  permissible flows between pairs of classes [6]. Objects 

are bound to these security classes.  Information may flow from 

object x to y through any sequence of operations if and only if 

 B, where A and B are the objects’ security classes. 

Information can be passed by copying, assignment, I/O, parameter 

passing, message sending, etc. We concerned with information 

flow on “legitimate” and “storage” channels, not “covert” 

channels. Binding of objects to security classes can be static or 

dynamic. With static binding, the security class of an object never 

changes. With dynamic binding, the object’s security class can 

change based on the content of the object. A process can also be 

bound to a security class. 

A lattice-ordered set is a poset (S, ) in which each two-element 

subset {x, y} has a greatest lower bound, denoted inf{x,y}, and a 
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least upper bound, denoted sup{x,y}. Lattice-ordered sets abound 

in mathematics and its applications. 

Let A and B be security classes. A  B refers to the security class 

of the result of any binary function on values x and y (x = A, y = 

B). Operator  is function independent.  

Under the reasonable assumptions that there is a finite number of 

security classes, that the flow relation is reflexive, and that the 

flow relation is transitive, we may suppose that (S, ) is a lattice, 

. If    is not a lattice, it may be transformed into one 

by adding new classes as necessary without changing the flows 

among the original classes. In this model, a system is secure if no 

flow of information violates the flow relation.  

 

3. DERIVATION OF LATTICE  
There is a natural relationship between lattice-ordered sets and 

lattices. Indeed, a lattice   is obtained from a lattice-

ordered poset (S, ). Suppose  =  is the relation. C is an 

upper bound of A and B if  C and  C. C is a least upper 

bound of A and B if for any upper bound D of A and B,  C. 

Lower bounds and greatest lower bounds work the same way. 

First we show that  is a poset. It is reflexive: A  A (for 

consistency sake); transitive: if A  B and B  C, then A  C 

(for consistency sake); antisymmetric: if A  B and B  A, then 

A = B (otherwise, one has a superfluous security class).  

Second, we assume S is finite because we dealing with the real 

world. Third, we can assume that x  y = inf{x,y}= L. There exists 

a greatest lower bound L on S without loss of generality. If 

needed, we can insert L with no object. Or, perhaps we could fill it 

with constant. Fourth, we can assume that x  y = sup{x,y}= H is 

a least upper bound operator for any x,y  S. 

A lattice-ordered set is bounded provided that it is a bounded 

poset, i.e., if it has an upper bound and a lower bound. For a 

bounded lattice-ordered set, the upper bound is frequently denoted 

1 and the lower bound is frequently denoted 0. Given an element x 

of a bounded lattice-ordered set (S, ), we say that x is 

complemented in (S, ) if there exists an element y S such that 

inf{x,y}= 0 and sup{x,y}= 1.  

Also, from a lattice , one may obtain a lattice-ordered 

poset (S, ) by setting x  y iff x = x  y. One obtains the same 

lattice-ordered poset (S, ) from the given lattice by setting x  

y iff y = x  y. One may prove that for any lattice, , 

and for any two members x and y of S, x  y = x iff y = x  y.  

Thus, we have established that  form universally 

bounded lattice with greatest lower bound L, and the least upper 

bound H. Lattices are different from a lattice-ordered sets because 

lattices are algebraic structures that form an variety, but lattice-

ordered sets are not algebraic structures, and therefore do not form 

a variety [7]. 

It is tempting to present the security objects through logical 

language. In modern times, many researchers have proposed logic 

diagrams, especially as representations of logical reasoning (e.g., 

[8]). “Diagrams are a kind of … knowledge representation 

mechanism that is characterized by correspondence between the 

structure of the representation and the structure of the 

represented” [9]. Their advantages include effective control of the 

reasoning process, and understandability by users. It is suggested 

that the ability to manipulate logic diagrams could be provided 

even to nonspecialists.   

Therefore, we saw material implication as an abstract counterpart 

of the empirical flow relation, , and the close resemblance 

above allows modeling the flow relation in all relevant cases. It 

follows, that y   x  y. 

4. LOGIC FORMULAE  
Consider the example (from [2]): 

•  Tipically, every student is authorized to use every device.  

• Those who have abused a device before lose access to that 

device.  

•  John is a student and a printer is device.  

•  John is authorized to use a printer. 

This access control policy can be written with flow relation, as: 

x (Student(x)  y (Device (y)  Abused (x, y))). We have  

1. y   x  y; 

1. Student (John)  (Device (printer)  Abused (John, printer)); 

2. Device (printer)  Abused (John, printer); 

3. Abused (John, printer). 

Student (x) receives John  means applying John  to Student(x) 

and, according to the structure of the formula, also to Abused(x, 

y). The notion of information flow here accomplishes this notion 

of application; as in mathematics, replacing a variable by a value 

means replacing it across the equation. 

Since John is a student, he is authorized to use a printer. Using the 

symbols "1" and "0" for security classes, authorized  or not, we 

get the truth value of Student(x) is processed according to not  

truth table, resulting in false to , and it is not processed further. 

On the other hand, assigning a value, say, printer, to y, causes 

replacing in Abused (John, printer). Hence, creating true in Device 

(printer) causes it to flow to  and is processed to end in 

Abused (John, printer). The resultant of the latter is false, as well 

as the example of access control policy.  

5. OPERATIONS WRITE AND READ 
The basic idea in this paper is to conceptualize the truth values as 

things that can be used as a set of functional characteristics of 

objects. This conceptualized flow is, to some degree, analogous to 

information flow. Every security object has two subspheres: the 

object itself and the truth value given its class of security. The 

truth value can flow to another term by such logical connective as 

material implication. 

The "write" operation can be interpreted as a flow of information 

to the object, as Figure 1 shows.  

 

 
 

Figure 1: The "write" operation is modeled by material 

implication between two variables, one of which is security 

level of object Om related to subject Si (writer), and another is 

security level of object Oj 

 

Then we can describe the writing and reading operations in 

notions of finite-state automata, as usual. The resultant of material 



implication is such that "1" represents “enabled”, and "0"   

“forbidden” (in the 3d column, see Table 1).  

 

Table 1. Truth table for the "write" operation 

 

Om (Si) Oj Om  Oj 
0 0 1 

0 1 1 

1 0 0 

1 1 1 
 

The "read" operation can be interpreted as a flow of information 

from the object Om, as Figure 2 shows. 

 

 
 

Figure 2: The "read" operation is modeled by material 

implication    between two variables, one of which is security 

level of object Om, and another is object Oj related to subject Sj 

(reader) 

Using the symbols "1" and "0" for security classes, similarly to 

the preceding case we get following truth table, see Table 2. 

 

Table 2: Truth table for the "read" operation 

Om Oj(Sj)       Om  Oj 

0 0 1 

1 0 0 

0 1 1 

1 1 1 

 

By duality we can formulate the rules of Biba integrity model, 

giving flow relation  as  (  x  y) = x   y. For example, 

using the symbols "1" and "0" for integrity classes, where "1" 

represents, as before, a higher level of integrity than "0", a subject 

y must not read an object x at a lower integrity level, accordingly, 

a subject x at a low level of integrity must not write to any object 

y at a higher level of integrity. 

The goal, of course, of deriving this logical model is for it to help 

us enforce security. To do this, we must monitor all information 

flow causing operations. We must monitor explicit flow 

(assignment, I/O) and implicit flow. We want to represent a 

program or statement Q in a way that easily allows us to evaluate 

whether or not it is secure. Define Q recursively: Q is an 

elementary statement (assignment, I/O); Q = Q1; Q2; Q = c: Q1, 

, Qm (c is m-valued variable). 

For elementary statements, Q is secure if any explicit flow caused 

by Q is secure. For Q = Q1; Q2, Q is secure if both Q1 and Q2 are 

secure. For Q = c: Q1, , Qm, Q is secure if each Qk is secure and 

all implicit flows from c are secure.  

6. LANGUAGE OF LOGIC 
Let's enter language of our logic. First we determine atomic 

formulas on the basis of the following predicates: 

1) grant_key (K, P,  ) – the principal P grants the key K to the 

principal  . It means automatic issuing the certificate of the key 

which is valid until it is revoked. 

2) grant_right (R, P,  , O) – the principal P grants to the 

principal   the access right R to the object O. 

3) give_obright (P, O, R, A) – the principal P determines that the 

condition of using the object O with the access right R was the 

possessing of the attribute A by any subject. The statement is valid 

until it is revoked. 

4) take_key (K, P,  ) – the principal P takes from the principal   

the key K. The key K is added to the key revocation list. 

5) take_right (R, P,  , O) – the principal P takes from the 

principal Q the access right R to an object O. 

6) take_obright (P, O, R, A) – the principal P withdraws the 

condition of using the object O with the access right R and the 

attributes A from all possessing subjects. 

When considering the security properties of a distributed system it 

is convenient to use concept based on histories. The system 

interacts with its environment through events. These events 

correspond to actions, done by system or its environment. We 

define them by . Sequence of events corresponding to possible 

sequence of actions determines a history. System events are 

defined in terms of histories.  

By a local history of principal  at the 

moment k, we mean a sequence of actions , 

executed by the principal. Number k indicates a point of time 

(discrete time), by which  has performed the actions above. We 

denote the local history of principal  by . We select the point 

k = 0, where all local histories are empty sequences. To simplify, 

we assume that all the clocks in the network are synchronized.  

Each principal  at any point of time k has:  

 
 
– the set that states the principal activity. This set is empty at 

the time k = 0. After the execution of action create_principal (P, 

), the element "+" is added to the set. After performing action 

delete_principal (P, Pm), it becomes empty, and all contents of all 

following sets are deleted.  

 
 
– the set of access rights to objects that  has at the point 

of time k.  After action, like grant_right (R, P, , O), or 

take_right (R, P, , O), each of the sets 
 
is enlarged or 

decreased with corresponding quadruples.  

A local state of principal  at the point of time k consists of  

1. local history ,  

2. set of activities ,  

3. set of keys , 

4.  set of access rights . 

Let us denote local principal states at the point of time k as . A 

global state of principals at the point of time k represents the 

sequence of local principal states   

At any point of time k each object  has: 

 
 
– the set that states the object activity. This set is empty at 

the point of time k = 0. After the execution of action 

create_object ( ), the element "+" is added to the set. After 

performing step delete_object (  it becomes empty. After 

performing action delete_object(   all contents of all 

following set are deleted.  

 
 
– the set stating the conditions of use of the object On  with 

given access rights at the point of time k.   After 

executing an action like  like is enlarged or decreased with 

corresponding quadruples.  



By a local state of objects at the point of time k we mean a 

sequence of pairs  

 

 

 

By global system state  we mean a pair of . 

A run  represents any sequence of global states of a system 

 

 
 

Program execution is a sequence of system states. In many cases a 

local state of principal is strongly associated with the available 

keys. For example, the formula "   has key K" could be written 

as follows: 

HKey( ,K)  

 
 

 

This formula means: "   has key K iff there is some principal 

which confirms that the key K belongs to principal  and nobody 

has revoked this key."  

 

7. CASE STUDY  
Let us consider a company that has information divided in two 

compartments:  

1.  financial (e.g., product pricing)  

2.  product (e.g., product designs).  

Each file in the computer system is labeled to belong to one of 

these compartments. Every principal is given a clearance for one 

or both compartments. For example, the company’s policy might 

be as follows: the company accounts have clearance for reading 

and writing files in the financial compartment, the company 

engineers have clearance for reading and writing files in the 

product compartment, and the company product managers have 

clearance for reading and writing files in both compartments. 

The principals of the system interact with the files through 

programs, which are untrusted. We want ensure that information 

flows only to the company’s policy. To achieve this goal, every 

subject records the labels of the compartments for which the 

principal is cleared; this clearance is stored in Slseen. Furthermore, 

the system remembers the maximum compartment label of data 

the subject has seen, Slmax. Now the information flow control rules 

can be implemented as follows.  

In our interpretation the read rule is: 

•  Before reading an object with labels O, check that  

 

. 

 

•  If so, set , and allow access.  

The subject is not allowed to have access to information in 

compartments for which it has no clearance. 

Also in our interpretation the corresponding write rule is:  

•  Allow a write to an object with clearance O only if    

 

. 

 

Every object written by a subject that read data in compartments L 

must be labeled with L’s labels. This rule ensures that if a subject 

S has read information in a compartment other than the ones listed 

in L than that information doesn’t leak into the object O. 

These information rules can be used to implement a wide range of 

policies. For example, the company can create more 

compartments, more principals, or modify the list of 

compartments a principal has clearance for. These changes in 

policy don’t require changes in the information flow rules. The 

standard policy of discretionary access claims that an object can 

be read only by those principals which have access rights on 

reading for this object [10].  

These requirements can be written in our logic. Let's denote  

 

  

 

a flow of information from object  to object , as Figure 2 

shows. In the definition it is stressed that a flow of information is 

not between subject and object, but only between two objects, for 

example, those related by input-output operations. The active role 

of a subject is expressed in the realization of this stream (this 

operation is localized in a subject, and displayed in a state of its 

associated objects). From the logical point of view operation 

 can be represented in the case of reading, 

as 

, 

 

where the arrow expresses material implication. The object , 

associated with the subject , after read operation, has the 

security level: . For write operation, we have also, 

as Figure 1 shows: 

. 

 

These operations can be represented as predicates: 

give_access (R, , P, O)  

 

 

This formula means:"  has an access to object O iff there is some 

principal which confirms that the right R belongs to principal  

and nobody has revoked this right." It is easy to see that the 

function  is simulated in the case of read 

operation, R = , as Figure 2 shows, 

 , 

 

or write operation, R = , 

 , 

as Figure 1 shows, where  and  say for security levels of 

corresponding objects. We can also extend these formulas to the 

case of multiple reads of object  or writes to object . 

 

8. SUMMARY AND CONCLUSION 
By access control we understand methods or mechanisms that 

decide whether requests to access some resource should be 

granted or denied. For example, operating systems need to control 

which subjects and applications can read, write, or delete which 

files; managers need to control which employees can perform 

which workflows within an organization. Prior forms of policy, 

such as access control matrix, allow you to specify only the access 

requests should be granted. Other queries were then denied. This 

approach does not allow the administration explicitly uphold 

access rights and restrictions. The language must support the 

ability to explicitly express both permissions and prohibitions. 

Originally, the languages of access control were invented driven 

by certain application; for example, operating systems. This led to 

the redundancy of effort in design. A language of access control 

should therefore support the deeper layer [11] that encapsulates 

domain-specific structure, assumptions, or knowledge. Its 



composition mechanisms should so facilitate the applicability of 

access control patterns across application domains. 

In this paper, we have considered the development of information 

security model, derived from the discretionary security model. 

Our model represents the formal method of reasoning for 

discretionary model (we read that as well for other models, for 

example, role access control) and defines logic to formalize a 

discretionary policy, and also offers a decision algorithm which 

can be used for check by a direct and automatic method of 

coherence of a policy of access or its logical investigations. 

We have defined a language for certificate-based access control 

based on Boolean logic, and shown that it thoroughly handles 

problems in security models. The analysis was shown to reduce to 

validity checks in propositional logic, and we support it with 

assume-guarantee reasoning. We have shown how the use of our 

language can help in the analysis of sertificate-based policies and 

of policies for discretionary access. 

We reiterate key elements of our work. By basing our language on 

classical Boolean logic, the properties of security classes and 

precise structure of accesses can be expressed as simple, purely 

result of evaluation of propositional forms. We give case study for 

the use of such a context for the purpose of illustration. 

The logic which we offer is powerful, indicative and allows 

creating and using simple expressions even with qualifiers.  

The offered logic has the expressiveness of the first-order logic. 

Analysis methods on the basis of this logic can be used at a design 

stage and checks of any computer network access. 

Practical systems need access and logical control. Offering a 

logical model, the authors proceeded from the fact that the main 

purpose of information security models  provide formalization of 

security policies. The more general models of information flows 

and finite automata were used for a description of information 

security models. 

In summary, the use of logic functions for the formulation of 

information security requirements makes it possible to use the 

developed apparatus of mathematical logic to determine the 

correct implementation of security policies in each specific case.  
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