
LOGICAL LANGUAGE OF CERTIFICATE-BASED ACCESS
CONTROL IN SECURITY MODELS

Mikhail M. Kucherov Nina A. Bogulskaya

Siberian Federal University
26B Kirenskogo Krasnoyarsk, Russia 660074

{mkucherov,nbogulskaya}@sfu-kras.ru

ABSTRACT

Over the last decades, we have seen several policy models,

including role-based access control and more recently, certificate-

base control. These models are based on the important notion

“flow relation”. In this work, we present a logical language of

certificate-based access control. Our model presents the formal

method of reasoning for discretionary access and defines logic to

express a discretionary policy. We introduce, instead, material

implication widely used in mathematics, and we show in a case

study its ease in every sense. We find it allows the policy

specifications to be interpreted more conveniently by practitioners

and implemented in a simple way. Our evaluation shows that

policies defined with material implication can be used for creation

of the specification of a trust relationships policy and for checking

safety of any computer system.

CCS Concepts

• Security and privacy~Access control

 • Security and privacy~Information flow control

 • Security and privacy~Software security engineering.

XML code:
<ccs2012>
<concept>

<concept_id>10002978.10002991.10002993</concept_id>
<concept_desc>Security and privacy~Access control</concept_desc>

<concept_significance>500</concept_significance>

</concept>

<concept>
<concept_id>10002978.10003006.10011608</concept_id>

<concept_desc>Security and privacy~Information flow

control</concept_desc>

<concept_significance>300</concept_significance>
</concept>

<concept>

<concept_id>10002978.10003022.10003023</concept_id>

<concept_desc>Security and privacy~Software security
engineering</concept_desc>

<concept_significance>100</concept_significance>

</concept>

</ccs2012>

Keywords
access control policy languages; access control model;

authorization; logic functions; information flow model

1. INTRODUCTION

Monitoring of access is understood as methods or mechanisms

which define whether the request for access to any resource shall

be resolved or forbidden. It is known that each distributed access

control system should contain an information protection

subsystem, which must be based on precisely defined

mathematical models for controlling access to this information.

In our article we propose the flow-based logic model for

interpreting the basic events and properties of the distributed

access control systems. Our goal is to develop the logic and the

formal language that can be used for making a security policy

specification and for checking any computer system security. We

can prove some important properties of this logic and show on a

case study how our logical language can express some access

control policies proposed so far. This can be achieved with

introducing certificates. The certificate-based access control is

aimed at specifying security policies for access to resources from

untrusted sources, e.g. via the Internet.

Recently, the work on logic-based access models and certificate-

based authorization has been intensified. Formal reasoning

techniques on security models and access policy specifications

have been presented, e.g. [1 5]. These models are usually based

on the modal logic and cannot be automated in a simple way. The

logic-based approaches generally fail to directly map to an

implementation and are not easily interpreted by practitioners. It is

intuitively clear that a system with total security is a system that

does not allow the information flows among its users. Thus, the

system is called safe under a certain policy if all its transactions

are confirmed with an ideal security system, except for permitted

in policy.

2. LOGICAL MODEL
It is known that the permitted flow of information in a system can

naturally be represented as a lattice-ordered set, (S,), where S is

a given set of security classes and « » is a flow relation

specifying permissible flows between pairs of classes [6]. Objects

are bound to these security classes. Information may flow from

object x to y through any sequence of operations if and only if

 B, where A and B are the objects’ security classes.

Information can be passed by copying, assignment, I/O, parameter

passing, message sending, etc. We concerned with information

flow on “legitimate” and “storage” channels, not “covert”

channels. Binding of objects to security classes can be static or

dynamic. With static binding, the security class of an object never

changes. With dynamic binding, the object’s security class can

change based on the content of the object. A process can also be

bound to a security class.

A lattice-ordered set is a poset (S,) in which each two-element

subset {x, y} has a greatest lower bound, denoted inf{x,y}, and a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

ICCSP ’17, March 17-19, 2017, Wuhan, China
© 2017 ACM. ISBN 978-1-4503-4867-6/17/03 …$15.00.

DOI: http://dx.doi.org/10.1145/3058060.3058067

mailto:Permissions@acm.org

least upper bound, denoted sup{x,y}. Lattice-ordered sets abound

in mathematics and its applications.

Let A and B be security classes. A B refers to the security class

of the result of any binary function on values x and y (x = A, y =

B). Operator is function independent.

Under the reasonable assumptions that there is a finite number of

security classes, that the flow relation is reflexive, and that the

flow relation is transitive, we may suppose that (S,) is a lattice,

. If is not a lattice, it may be transformed into one

by adding new classes as necessary without changing the flows

among the original classes. In this model, a system is secure if no

flow of information violates the flow relation.

3. DERIVATION OF LATTICE
There is a natural relationship between lattice-ordered sets and

lattices. Indeed, a lattice is obtained from a lattice-

ordered poset (S,). Suppose = is the relation. C is an

upper bound of A and B if C and C. C is a least upper

bound of A and B if for any upper bound D of A and B, C.

Lower bounds and greatest lower bounds work the same way.

First we show that is a poset. It is reflexive: A A (for

consistency sake); transitive: if A B and B C, then A C

(for consistency sake); antisymmetric: if A B and B A, then

A = B (otherwise, one has a superfluous security class).

Second, we assume S is finite because we dealing with the real

world. Third, we can assume that x y = inf{x,y}= L. There exists

a greatest lower bound L on S without loss of generality. If

needed, we can insert L with no object. Or, perhaps we could fill it

with constant. Fourth, we can assume that x y = sup{x,y}= H is

a least upper bound operator for any x,y S.

A lattice-ordered set is bounded provided that it is a bounded

poset, i.e., if it has an upper bound and a lower bound. For a

bounded lattice-ordered set, the upper bound is frequently denoted

1 and the lower bound is frequently denoted 0. Given an element x

of a bounded lattice-ordered set (S,), we say that x is

complemented in (S,) if there exists an element y S such that

inf{x,y}= 0 and sup{x,y}= 1.

Also, from a lattice , one may obtain a lattice-ordered

poset (S,) by setting x y iff x = x y. One obtains the same

lattice-ordered poset (S,) from the given lattice by setting x

y iff y = x y. One may prove that for any lattice, ,

and for any two members x and y of S, x y = x iff y = x y.

Thus, we have established that form universally

bounded lattice with greatest lower bound L, and the least upper

bound H. Lattices are different from a lattice-ordered sets because

lattices are algebraic structures that form an variety, but lattice-

ordered sets are not algebraic structures, and therefore do not form

a variety [7].

It is tempting to present the security objects through logical

language. In modern times, many researchers have proposed logic

diagrams, especially as representations of logical reasoning (e.g.,

[8]). “Diagrams are a kind of … knowledge representation

mechanism that is characterized by correspondence between the

structure of the representation and the structure of the

represented” [9]. Their advantages include effective control of the

reasoning process, and understandability by users. It is suggested

that the ability to manipulate logic diagrams could be provided

even to nonspecialists.

Therefore, we saw material implication as an abstract counterpart

of the empirical flow relation, , and the close resemblance

above allows modeling the flow relation in all relevant cases. It

follows, that y x y.

4. LOGIC FORMULAE
Consider the example (from [2]):

• Tipically, every student is authorized to use every device.

• Those who have abused a device before lose access to that

device.

• John is a student and a printer is device.

• John is authorized to use a printer.

This access control policy can be written with flow relation, as:

x (Student(x) y (Device (y) Abused (x, y))). We have

1. y x y;

1. Student (John) (Device (printer) Abused (John, printer));

2. Device (printer) Abused (John, printer);

3. Abused (John, printer).

Student (x) receives John means applying John to Student(x)

and, according to the structure of the formula, also to Abused(x,

y). The notion of information flow here accomplishes this notion

of application; as in mathematics, replacing a variable by a value

means replacing it across the equation.

Since John is a student, he is authorized to use a printer. Using the

symbols "1" and "0" for security classes, authorized or not, we

get the truth value of Student(x) is processed according to not

truth table, resulting in false to , and it is not processed further.

On the other hand, assigning a value, say, printer, to y, causes

replacing in Abused (John, printer). Hence, creating true in Device

(printer) causes it to flow to and is processed to end in

Abused (John, printer). The resultant of the latter is false, as well

as the example of access control policy.

5. OPERATIONS WRITE AND READ
The basic idea in this paper is to conceptualize the truth values as

things that can be used as a set of functional characteristics of

objects. This conceptualized flow is, to some degree, analogous to

information flow. Every security object has two subspheres: the

object itself and the truth value given its class of security. The

truth value can flow to another term by such logical connective as

material implication.

The "write" operation can be interpreted as a flow of information

to the object, as Figure 1 shows.

Figure 1: The "write" operation is modeled by material

implication between two variables, one of which is security

level of object Om related to subject Si (writer), and another is

security level of object Oj

Then we can describe the writing and reading operations in

notions of finite-state automata, as usual. The resultant of material

implication is such that "1" represents “enabled”, and "0"

“forbidden” (in the 3d column, see Table 1).

Table 1. Truth table for the "write" operation

Om (Si) Oj Om Oj
0 0 1

0 1 1

1 0 0

1 1 1

The "read" operation can be interpreted as a flow of information

from the object Om, as Figure 2 shows.

Figure 2: The "read" operation is modeled by material

implication between two variables, one of which is security

level of object Om, and another is object Oj related to subject Sj

(reader)

Using the symbols "1" and "0" for security classes, similarly to

the preceding case we get following truth table, see Table 2.

Table 2: Truth table for the "read" operation

Om Oj(Sj) Om Oj

0 0 1

1 0 0

0 1 1

1 1 1

By duality we can formulate the rules of Biba integrity model,

giving flow relation as (x y) = x y. For example,

using the symbols "1" and "0" for integrity classes, where "1"

represents, as before, a higher level of integrity than "0", a subject

y must not read an object x at a lower integrity level, accordingly,

a subject x at a low level of integrity must not write to any object

y at a higher level of integrity.

The goal, of course, of deriving this logical model is for it to help

us enforce security. To do this, we must monitor all information

flow causing operations. We must monitor explicit flow

(assignment, I/O) and implicit flow. We want to represent a

program or statement Q in a way that easily allows us to evaluate

whether or not it is secure. Define Q recursively: Q is an

elementary statement (assignment, I/O); Q = Q1; Q2; Q = c: Q1,

, Qm (c is m-valued variable).

For elementary statements, Q is secure if any explicit flow caused

by Q is secure. For Q = Q1; Q2, Q is secure if both Q1 and Q2 are

secure. For Q = c: Q1, , Qm, Q is secure if each Qk is secure and

all implicit flows from c are secure.

6. LANGUAGE OF LOGIC
Let's enter language of our logic. First we determine atomic

formulas on the basis of the following predicates:

1) grant_key (K, P,) – the principal P grants the key K to the

principal . It means automatic issuing the certificate of the key

which is valid until it is revoked.

2) grant_right (R, P, , O) – the principal P grants to the

principal the access right R to the object O.

3) give_obright (P, O, R, A) – the principal P determines that the

condition of using the object O with the access right R was the

possessing of the attribute A by any subject. The statement is valid

until it is revoked.

4) take_key (K, P,) – the principal P takes from the principal

the key K. The key K is added to the key revocation list.

5) take_right (R, P, , O) – the principal P takes from the

principal Q the access right R to an object O.

6) take_obright (P, O, R, A) – the principal P withdraws the

condition of using the object O with the access right R and the

attributes A from all possessing subjects.

When considering the security properties of a distributed system it

is convenient to use concept based on histories. The system

interacts with its environment through events. These events

correspond to actions, done by system or its environment. We

define them by . Sequence of events corresponding to possible

sequence of actions determines a history. System events are

defined in terms of histories.

By a local history of principal at the

moment k, we mean a sequence of actions ,

executed by the principal. Number k indicates a point of time

(discrete time), by which has performed the actions above. We

denote the local history of principal by . We select the point

k = 0, where all local histories are empty sequences. To simplify,

we assume that all the clocks in the network are synchronized.

Each principal at any point of time k has:

– the set that states the principal activity. This set is empty at

the time k = 0. After the execution of action create_principal (P,

), the element "+" is added to the set. After performing action

delete_principal (P, Pm), it becomes empty, and all contents of all

following sets are deleted.

– the set of access rights to objects that has at the point

of time k. After action, like grant_right (R, P, , O), or

take_right (R, P, , O), each of the sets

is enlarged or

decreased with corresponding quadruples.

A local state of principal at the point of time k consists of

1. local history ,

2. set of activities ,

3. set of keys ,

4. set of access rights .

Let us denote local principal states at the point of time k as . A

global state of principals at the point of time k represents the

sequence of local principal states

At any point of time k each object has:

– the set that states the object activity. This set is empty at

the point of time k = 0. After the execution of action

create_object (), the element "+" is added to the set. After

performing step delete_object (it becomes empty. After

performing action delete_object(all contents of all

following set are deleted.

– the set stating the conditions of use of the object On with

given access rights at the point of time k. After

executing an action like like is enlarged or decreased with

corresponding quadruples.

By a local state of objects at the point of time k we mean a

sequence of pairs

By global system state we mean a pair of .

A run represents any sequence of global states of a system

Program execution is a sequence of system states. In many cases a

local state of principal is strongly associated with the available

keys. For example, the formula " has key K" could be written

as follows:

HKey(,K)

This formula means: " has key K iff there is some principal

which confirms that the key K belongs to principal and nobody

has revoked this key."

7. CASE STUDY
Let us consider a company that has information divided in two

compartments:

1. financial (e.g., product pricing)

2. product (e.g., product designs).

Each file in the computer system is labeled to belong to one of

these compartments. Every principal is given a clearance for one

or both compartments. For example, the company’s policy might

be as follows: the company accounts have clearance for reading

and writing files in the financial compartment, the company

engineers have clearance for reading and writing files in the

product compartment, and the company product managers have

clearance for reading and writing files in both compartments.

The principals of the system interact with the files through

programs, which are untrusted. We want ensure that information

flows only to the company’s policy. To achieve this goal, every

subject records the labels of the compartments for which the

principal is cleared; this clearance is stored in Slseen. Furthermore,

the system remembers the maximum compartment label of data

the subject has seen, Slmax. Now the information flow control rules

can be implemented as follows.

In our interpretation the read rule is:

• Before reading an object with labels O, check that

.

• If so, set , and allow access.

The subject is not allowed to have access to information in

compartments for which it has no clearance.

Also in our interpretation the corresponding write rule is:

• Allow a write to an object with clearance O only if

.

Every object written by a subject that read data in compartments L

must be labeled with L’s labels. This rule ensures that if a subject

S has read information in a compartment other than the ones listed

in L than that information doesn’t leak into the object O.

These information rules can be used to implement a wide range of

policies. For example, the company can create more

compartments, more principals, or modify the list of

compartments a principal has clearance for. These changes in

policy don’t require changes in the information flow rules. The

standard policy of discretionary access claims that an object can

be read only by those principals which have access rights on

reading for this object [10].

These requirements can be written in our logic. Let's denote

a flow of information from object to object , as Figure 2

shows. In the definition it is stressed that a flow of information is

not between subject and object, but only between two objects, for

example, those related by input-output operations. The active role

of a subject is expressed in the realization of this stream (this

operation is localized in a subject, and displayed in a state of its

associated objects). From the logical point of view operation

 can be represented in the case of reading,

as

,

where the arrow expresses material implication. The object ,

associated with the subject , after read operation, has the

security level: . For write operation, we have also,

as Figure 1 shows:

.

These operations can be represented as predicates:

give_access (R, , P, O)

This formula means:" has an access to object O iff there is some

principal which confirms that the right R belongs to principal

and nobody has revoked this right." It is easy to see that the

function is simulated in the case of read

operation, R = , as Figure 2 shows,

 ,

or write operation, R = ,

 ,

as Figure 1 shows, where and say for security levels of

corresponding objects. We can also extend these formulas to the

case of multiple reads of object or writes to object .

8. SUMMARY AND CONCLUSION
By access control we understand methods or mechanisms that

decide whether requests to access some resource should be

granted or denied. For example, operating systems need to control

which subjects and applications can read, write, or delete which

files; managers need to control which employees can perform

which workflows within an organization. Prior forms of policy,

such as access control matrix, allow you to specify only the access

requests should be granted. Other queries were then denied. This

approach does not allow the administration explicitly uphold

access rights and restrictions. The language must support the

ability to explicitly express both permissions and prohibitions.

Originally, the languages of access control were invented driven

by certain application; for example, operating systems. This led to

the redundancy of effort in design. A language of access control

should therefore support the deeper layer [11] that encapsulates

domain-specific structure, assumptions, or knowledge. Its

composition mechanisms should so facilitate the applicability of

access control patterns across application domains.

In this paper, we have considered the development of information

security model, derived from the discretionary security model.

Our model represents the formal method of reasoning for

discretionary model (we read that as well for other models, for

example, role access control) and defines logic to formalize a

discretionary policy, and also offers a decision algorithm which

can be used for check by a direct and automatic method of

coherence of a policy of access or its logical investigations.

We have defined a language for certificate-based access control

based on Boolean logic, and shown that it thoroughly handles

problems in security models. The analysis was shown to reduce to

validity checks in propositional logic, and we support it with

assume-guarantee reasoning. We have shown how the use of our

language can help in the analysis of sertificate-based policies and

of policies for discretionary access.

We reiterate key elements of our work. By basing our language on

classical Boolean logic, the properties of security classes and

precise structure of accesses can be expressed as simple, purely

result of evaluation of propositional forms. We give case study for

the use of such a context for the purpose of illustration.

The logic which we offer is powerful, indicative and allows

creating and using simple expressions even with qualifiers.

The offered logic has the expressiveness of the first-order logic.

Analysis methods on the basis of this logic can be used at a design

stage and checks of any computer network access.

Practical systems need access and logical control. Offering a

logical model, the authors proceeded from the fact that the main

purpose of information security models provide formalization of

security policies. The more general models of information flows

and finite automata were used for a description of information

security models.

In summary, the use of logic functions for the formulation of

information security requirements makes it possible to use the

developed apparatus of mathematical logic to determine the

correct implementation of security policies in each specific case.

9. REFERENCES
[1] Abadi, M., Burrows, M., Lampson, B., and Plotkin, G. 1993.

A Calculus for Access Control in Distributed Systems. ACM

TOPLAS, 15(4) (Sept. 1993), 706 -734, 1993. DOI =

 https://doi.org/10.1145/155183.155225.

[2] Basseda, R., Gao, T., Kifer M., Greenspan, S. and Chell C.

Representing Flexible Role-Base Access Control Policies

Using Objects and Defeasible Reasoning. In Rule

Technologies: Foundations, Tools, and Applications.

Springer, 376-387, 2015.

[3] Bertino, E., Ferrari, E., Buccafurri, F. and Rullo, P. A Logical

Framework forReasoning on Data Access Control Policies.

In Proceeding of the 12th IEEE Computer Security

Workshop (June 1999), 175-191, 1999. DOI =

 https://doi.org/10.1109/CSFW.1999.779772.

[4] Bruns, G., Dantas, D.S. and Huth., M. 2007. A simple and

expressive semantic framework for policy composition in

access control. In Proceedings of the 2007 ACM workshop

on Formal methods in security engineering (Nov. 2007), 12-

21, 2007. DOI =

 https://doi.org/10.1145/1314436.1314439

[5] Kurkowski, M. and Pejas, J. A Propositional Logic for

Access Control in Distributed Systems. In 9th Artificial

Intelligence and Security in Computing Systems. Springer

Science+Business Media New York,175-189, 2003.

[6] Denning, D. E. 1976. A lattice model of secure information

flow.CACM, 19(5), 236-243, 1976. DOI =

 https://doi.org/10.1145/360051.360056.

[7] Grätzer, G. 1998. Lattice Theory: Foundation. Springer

Science & Business Media, Berlin/Heidelberg, Germany.

[8] Glasgow, J., Narayanan, N. H. and Chandrasekaran, B.eds.

1995. Diagrammatic Reasoning. MIT Press, Cambridge, MA.

[9] Kulpa, Z. 1997. Diagrammatic representation of Interval

Space in Proving Theorems about Interval Relations.

Reliable Computing, 3, 209 - 217, 1997.

 DOI = https://doi.org/10.1023/A:1009919304728

[10] Saltzer, J. H., Kaashoek, M. F. 2009. Principles of Computer

System Design. MIT Press, Cambridge, MA.

[11] Chomsky, N. 1965 Aspects of the Theory of Syntax.

Cambridge, MA: MIT Press.

https://doi.org/10.1145/155183.155225
https://doi.org/10.1109/CSFW.1999.779772
https://doi.org/10.1145/1314436.1314439
https://doi.org/10.1145/360051.360056
https://doi.org/10.1023/A:1009919304728

