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Abstract. The aim of the article is to find conditions on the coeffi-
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For polynomials the problem of root localization is a classic prob-
lem (see, e.g., [1, Ch. 16], [2], [3]) and it has a long history. Root
localization of algebraic equations with the use of complex analysis is
considered in [4]. For entire functions this problem has not been con-
sidered. Nevertheless, there are equations and systems of equations
consisting of exponential polynomials (see [5, 6]). This raises the ques-
tion on the number of roots of such functions, on the number of real
or imaginary roots, etc.

1. The absence of zeros

Let function f = f(z) with respect to complex variable z be a holo-
morphic in a neighborhood of zero in the complex plane C:

(1) f(z) =
∞∑
k=0

bkz
k, f(0) = b0 = 1.

Let γr be a circle of the form

γr = {z : |z| = r}, r > 0.

Theorem 1. For function f to be an entire function of finite order
of growth which has no zeros, it is necessary and sufficient that for
sufficiently small r there exists k0 ∈ N such that
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9149.2016.1, and by the grant of the Russian Federation Government for research
under the supervision of leading scientist at Siberian Federal University, contract
no. 14.Y26.31.0006.
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(2)

∫
γr

1

zk
df

f
= 0 for all k > k0.

In this case the minimum k0 is equal to the order of function.

Recall that the entire function f(z) has a finite order (of growth) if
there exists a positive number A such that

f(z) = O(eR
A

) for |z| = R → +∞.

The infimum of such numbers A is called the order of function.
Proof. Let the function f be a function of finite order of growth,

which has no zeros in C then it is well known that it has the form:
f(z) = eφ(z), where φ(z) is a polynomial of some degree k0 (see, e.g.,
[7, Ch. 7, Sec. 1.5]). Then∫

γr

1

zk
df

f
=

∫
γr

1

zk
φ′(z) dz = 0 under k > k0.

Conversely, suppose that condition (2) is fulfilled. Since f(z) is a
holomorphic function in a neighborhood of zero and f(0) ̸= 0 then
the values of f(z) lie in a neighborhood of f(0) and this neighbor-
hood does not contain the point 0 for sufficiently small |z|. Therefore,
the holomorphic function φ(z) = ln f(z) (ln 1 = 0) is defined in the
neighborhood of zero.

Let

φ(z) =
∞∑
k=0

akz
k, a0 = ln f(0) = ln b0.

Then, for sufficiently small r we have

(3)
1

2πi

∫
γr

1

zk
df

f
=

1

2πi

∫
γr

1

zk
φ′(z) dz = kak.

When condition (2) is fulfilled we see that ak = 0 under k > k0.
Therefore, φ(x) is a polynomial of degree k0. Consequently, f(z) =
eφ(z) is an entire function of finite order k0. �

There exists a recursive relationship between coefficients of f and
φ(z) (see, e.g., [4, §2, Lemma 2.3]).

Lemma 1. The following relations are true:

ak =
(−1)k−1

kbk0

∣∣∣∣∣∣∣∣
b1 b0 0 . . . 0
2b2 b1 b0 . . . 0
. . . . . . . . . . . . . . .
kbk bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣ ,
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and

bk =
b0
k!

∣∣∣∣∣∣∣∣
a1 −1 0 . . . 0
2a2 a1 −2 . . . 0
. . . . . . . . . . . . . . .
kak (k − 1)ak−1 (k − 2)ak−2 . . . a1

∣∣∣∣∣∣∣∣ .
Therefore, we have the following statement.

Corollary 1. For function f to be an entire function of finite order k0
which has no zeros, it is necessary and sufficient that the determinant

(4)

∣∣∣∣∣∣∣∣
b1 b0 0 . . . 0
2b2 b1 b0 . . . 0
. . . . . . . . . . . . . . .
kbk bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣ = 0 under k > k0.

where k0 is the minimum number with this property.

Example 1. Let

f(z) = ez = 1 +
∞∑
k=1

zk

k!
,

i.e, b0 = 1, bk =
1

k!
, k > 1.

Let us substitute these values into (4). When k = 1 the determinant
is not equal to zero. For k > 1 all determinants are equal to zero since
the first two columns are the same. Then the function f(z) is of order
1 and it has no zeros in the complex plane.

2. Auxiliary statements

Let a function f(z) of the form (1) be an entire function of finite
order of growth. Zeros of this function are α1, α2, . . . , αn, . . . (every
root appears as many times as its multiplicities). There is a finite
or infinite number of zeros. They are indexed in increasing order of
magnitude |α1| 6 |α2| 6 . . . 6 |αn| 6 . . ..

Recall Hadamard decomposition for such functions (see, e.g., [8, Ch.
8, Theorem 8.2.4], [7, Ch. 7, Sec. 2.3]).

Theorem 2. If f(z) is an entire function of finite order ρ then

(5) f(z) = zseQ(z)

∞∏
n=1

(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+...+ zp

pα
p
n ,

where Q(z) is a polynomial of degree q 6 ρ, s is the multiplicity of zero
of the function f at the point 0, p is some integer number and p 6 ρ.
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The infinite product in (5) converges absolutely and locally uniformly
in C. (Recall that a sequence of holomorphic functions converges locally
uniformly in an open set U , if it converges uniformly on every compact
subset of U .) In what follows we assume for simplicity that f(0) = 1.
The polynomial Q(z) is of the form

Q(z) =

q∑
j=1

djz
j.

Here d0 = 0, since f(0) = 1.
The expression

(6) Φ(z) =
∞∏
n=1

(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+...+ zp

pα
p
n

is called the canonical product, and the integer number p is the genus
of the canonical product depended on f . The genus of entire function
f(z) is max{q, p}. If ρ′ is the order of canonical product (6) then
ρ = max{q, ρ′}.

Let us consider the following series

(7)
∞∑
n=1

1

|αn|γ
.

The infimum of positive γ for which the series (7) converges is called
the rate of convergence of zeros of the canonical product Φ(z).

It is well known (see., e.g., [8, Sec. 8, §8.2.5], [7, Ch. 7, Sec. 2.2])
that the rate of convergence of the zeros of the canonical product is
equal to its order.

Then sums of zeros in negative power

σk =
∞∑
n=1

1

αk
n

, k ∈ N,

are absolutely convergent series when k > ρ′, i.e., when k > ρ. It is
also known that ρ′ − 1 6 p 6 ρ′ (see, e.g., [8, Sec. 8, §8.2.7])

In what follows we consider the power sums with positive integer
exponents k. Let us relate integrals in (2) to power sums σk of zeros.

Formula (3) relates integrals in (2) to the expansion coefficients of
φ(z) = ln f(z) in the neighborhood of zero. Let us express the integral
in terms of the power sums of zeros, using the Hadamard formula. We
consider the case of s = 0 that is, f(0) ̸= 0.
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In a sufficiently small neighborhood of zero we have (according to
the Hadamard formula (5))

φ(z) = Q(z) +
∞∑
n=1

ln

[(
1− z

αn

)
ePn(z)

]
,

where Pn(z) =
z

αn

+
z2

2α2
n

+ . . .+
zp

pαp
n
.

The series for φ(z) converges absolutely and uniformly in a suffi-
ciently small neighborhood of zero since the zeros αj are bounded away
from zero.

It is obvious that

1

2πi

∫
γr

1

zk
· dQ(z) =

{
kdk under 1 6 k 6 q,

0 under k > q.

Let us transform the following expression

d ln

[(
1− z

αn

)
ePn(z)

]
=

d

[(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n

]
(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n

=

=
d
(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n +

(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n d
(

z
αn

+ z2

2α2
n
+ · · ·+ zp

pαp
n

)
(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n

=

=
d
(
1− z

αn

)
(
1− z

αn

) + d

(
z

αn

+
z2

2α2
n

+ · · ·+ zp

pαp
n

)
=

=
dz

z − αn

+

(
1

αn

+
z

α2
n

+ · · ·+ zp−1

αp
n

)
dz =

=
dz

z − αn

+
1

αn


(

zp

αp
n
− 1
)

(
z
αn

− 1
)
 dz =

dz

z − αn

+
(zp − αp

n)dz

αp−1
n (z − αn)

=
zpdz

αp
n(z − αn)

.

Then

1

2πi

∞∑
n=1

∫
γr

d

[(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n

]
zk
(
1− z

αn

)
e

z
αn

+ z2

2α2
n
+···+ zp

pα
p
n

=
1

2πi

∞∑
n=1

∫
γr

zp−kdz

αp
n(z − αn)

=
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=

0, if k 6 p,

−
∞∑
n=1

1
αk
n
= −σk, if k > p.

Thus we have the following stament

Proposition 1. Let f(z) be an entire function of finite order of growth
ρ of the form (5) and f(0) = 1. If q 6 p then

1

2πi

∫
γr

1

zk
df

f
=


kdk under k 6 q,

0 under q < k 6 p,

−σk under k > p.

Similarly, we can consider the case of q > p. In any case we have

Corollary 2. The following equality is true

1

2πi

∫
γr

1

zk
df

f
= −σk, if k > ρ.

It follows from (3), Lemma 1 and Corollary 2 that

Corollary 3. The following relations are true

(8) σk = −(−1)k−1

bk0

∣∣∣∣∣∣∣∣
b1 b0 0 . . . 0
2b2 b1 b0 . . . 0
. . . . . . . . . . . . . . .
kbk bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣ under k > ρ.

These formulas connect the power sums σk to the coefficients of the
function f . In the case when σ1 is an absolutely convergent series such
formulas were considered in [4, §2].

3. Finite number of zeros

Consider the entire function of finite order of growth of the form (1).
In this section we find conditions for coefficients of function whereby
the function has a finite number of zeros. First of all, we need to find
the order ρ of function f . To do this, we use the formula (see, e.g., [8,
Ch. 8, Sec. 8.3], [7, Ch. 7, §2])

lim
n→∞

ln(1/|bn|)
n lnn

=
1

ρ
.

If ρ is a fractional number then the function has an infinite number of
zeros. In this section we assume that ρ is integer.

We need some results for infinite Hankel matrices. They can be
found in [1, Ch. 16, §10] and in [9, Ch. 2].
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Consider a sequence of complex numbers s0, s1, s2 . . . . This sequence
defines an infinite Hankel matrix

(9) S =


s0 s1 s2 . . .
s1 s2 s3 . . .
s2 s3 s4 . . .
. . . . . . . . . . . .

 .

The sequent principal minors of the matrix S are designated as
D0, D1, D2, . . .:

Dp = |sj+k|p−1
0 , p = 0, 1, . . . .

We also assume that D−1 = 1.
If for each p ∈ N there is a not equal to zero minor of S of order p

then the matrix has infinite rank. If starting with some p, all minors
are equal to zero then the matrix S has finite rank. The smallest value
of p is called the rank of the matrix. Here are two statements about
matrices C of finite rank p (see [1, Ch. 16, §10]).

Corollary 4 (Kronecker). If an infinite Hankel matrix S of the form
(9) has finite rank p then Dp−1 ̸= 0.

Converse statement is also true (see [9, §11]).

Corollary 5 (Frobenius). If minor of infinite Hankel matrix Dp−1 ̸= 0
and minors Dp = Dp+1 = . . . Dp+j = . . . = 0 then the rank of the
matrix S is finite and it is equal to p.

Theorem 3. Infinite Hankel matrix has finite rank p if and only if
there are p integers c1, c2, . . . , cp such that

sj =

p∑
j=1

cjsp−j j > p.

This theorem is given in [1, Ch. 16, §10, Theorem 7].

Theorem 4. Matrix S has finite rank p if and only if the sum of the
series

(10) R(z) =
s0
z

+
s1
z2

+
s2
z3

+ . . .

is a rational function with respect to z. In this case, the rank of the
matrix S coincides with the number of poles of R(z). Each pole is
considered with regard to its multiplicity.
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This statement is given in [1, Ch. 16, §10].
Consider again an entire function f(z) with integer order ρ. By

the properties of an entire function the power sums σk are absolutely
convergent series when k > ρ. We introduce sj = σ2k0+j, 2k0 > ρ + 1,
j = 0, 1, . . .. Consider an infinite Hankel matrix S of the form (9).

Theorem 5. Function f has a finite number of zeros if and only if the
rank of the matrix S is finite. The number of distinct zeros of function
f is equal to the rank of the matrix S.

Proof. Let us assume that α1, . . . , αp are zeros of function f . The
number of zeros is finite (each root is considered with regard to its
multiplicity). Then

(11) σk =

p∑
j=1

1

αk
j

, k > k0 > ρ,

and sj = σ2k0+j, j > 0.
Let us consider a polynomial P (x) of degree p with the roots 1/α1, . . . ,

1/αp and with the coefficient at the highest degree equal to 1:

P (z) = zp + c1z
p−1 + . . .+ cn−1z + cp.

The coefficients of the polynomial can be found with the use of the
classical Newton formulas

σj + c1σj−1 + . . .+ cj−1σ1 + jcj, 1 6 j 6 p.

When j > p they have the form

σj + c1σj−1 + . . .+ cpσj−p = 0

or

σj = −c1σj−1 − . . . σj−pcp.

Taking sums σ2k0+j for sj, we obtain

sj = −sj−1c1 − . . .− sj−pcp.

Thus, Theorem 3 shows that the rank of S is finite and it does not
exceed p.

Suppose now that the rank of S is finite and it is equal to q. Ac-
cording to Theorem 4, this rank is the number of poles of the rational
function R(z) (formula (10)). Each pole is considered with regard to
its multiplicity.

Series R(z) converges (absolutely and uniformly) for z lying outside
of a disk centered at the origin. The disk contains all poles (as yet
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unknown) of function R(z). Let us transform R(z), assuming that
|αmz| > 1 for all αm:

R(z) =
s0
z

+
s1
z2

+
s2
z3

+ . . . =
1

z

∞∑
k=0

1

zk

(
∞∑

m=1

1

α2k0+k
m

)
=

=
1

z

∞∑
m=1

(
∞∑
k=0

1

α2k0
m

· 1

αk
mz

k

)
=

1

z

∞∑
m=1

1

α2k0
m

(
∞∑
k=0

1

(αmz)k

)
=

=
1

z

∞∑
m=1

1

α2k0
m

· αmz

αmz − 1
=

∞∑
m=1

1

α2k0
m

· αm

αmz − 1
.

Changing the order of summation of series is justified because they
converge absolutely. By hypothesis, R(z) is rational function. Let us
show that this series contains only a finite number of terms. Consider
the following function

R∗(w) = R

(
1

w

)
=

∞∑
m=1

1

α2k0
m

· αm
αm

w
− 1

=
∞∑

m=1

1

α2k0−1
m

· w

αm − w
.

Let us analyze this series to find the convergence domain. Roots are
arranged in increasing order of magnitude. Let |w| 6 r < |α1| then∣∣∣∣1− w

αm

∣∣∣∣ > 1− |w|
|αm|

> 1− r

|α1|
= c.

That is
|w|
|αm|

6 r

|α1|
and we have

∞∑
m=1

1

|αm|2k0−1
· 1∣∣∣1− w

αm

∣∣∣ 6 c
∞∑

m=1

1

|αm|2k0−1
.

The last series converges by the choice of k0. Thus series R∗(w) con-
verges absolutely and uniformly inside the disk {|w| < |α1|}. Sepa-
rating out the roots with the same magnitude |α1| = . . . = |αn|, we
obtain

(12) R∗(w) =
n∑

m=1

1

α2k0−1
m

· 1
αm

w
− 1

+
∞∑

m=n+1

1

α2k0−1
m

· 1
αm

w
− 1

.

The first sum is a finite sum of fractions with poles α1, . . . , αn. The
second sum is the series that defines a holomorphic function for |w| <
|αn+1| (it is due to the consideration given above). Because R∗(w)
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is rational function then the second series in (12) is also a rational
function.) Let us consider the following function

R∗(w) =
P (w)

Q(w)
,

where P (w) and Q(w) are polynomials. Then P (w) = Q(w)R∗(w).
Since left hand side of this expression is a polynomial then Q(α1) =
. . . = Q(αn) = 0. If s is the degree of Q then Q(αn+1) = . . . = Q(αs) =
0. Therefore, series R∗(w) has finite number of fractions and it is equal
to the number q of distinct roots αj. So rank S is q. If the number of
all roots (with regard to multiplicity) is equal to p then the first part
of the theorem shows that p > q. �

Note that by Corollary 3 power sums sj are expressed in terms of
the Taylor coefficients of the function f .

Let us assume that entire function f has real coefficients then it has
either real or complex conjugate zeros. Note that in this case all the
power sums σk and, accordingly, the numbers sj are real.

Now we raise the question of the number of real and complex zeros.
Because function f(z) has a finite number of distinct zeros which is
equal to the rank of Hankel matrix S, the solution of this problem is
reduced to the classic problem of finding the number of distinct real
roots of a polynomial (see, e.g., [1, Ch. 16, §9]).

Consider an infinite Hankel matrix S of the form (9) with sj = σ2k0+j.
The rank of the matrix is p. We introduce the truncated matrix Sp:

(13) Sp =


s0 s1 s2 . . . sp−1

s1 s2 s3 . . . sp
s2 s3 s4 . . . . . .
. . . . . . . . . . . . . . .
sp−1 sp sp+1 . . . s2p−2

 ,

and truncated Hankel quadratic form

(14) Sp(x, x) =

p−1∑
k,j=0

sj+kxjxk.

Distinct zeros of function f are β1, . . . , βp with multiplicities n1, . . . , np,
respectively.

Because sj = σ2k0+j then

Sp(x, x) =

p−1∑
k,j=0

p∑
m=1

nm

βj+k+2k0
m

xjxk =
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(15) =

p∑
m=1

nm

β2k0
m

(
x0 +

x1

βm

+ . . .+
xp−1

βp−1
m

)2

.

Linear forms

Zm =
1

β2k0
m

·
(
x0 +

x1

βm

+ . . .+
xp−1

βp−1
m

)
, 1 6 m 6 p,

are linearly independent because the determinant composed of their
coefficients is the Vandermonde determinant and it is distinct from
zero. If the forms Zm and Zk are complex conjugate then we can

consider
1

2
(Zm + Zk)) and

1

2i
(Zm − Zk) instead. Wherein, these forms

are linearly independent and real.
In relation (15) each real root corresponds to a squared number and

conjugate root corresponds to the difference of squared numbers. Next
we use the Frobenius theorem on rank and signature of Hankel form
Sp(x, x) (see, e.g., [1, Ch. 10, §10]). If we have Dm−1 ̸= 0 for m =
0, . . . , p.

Suppose that for some h < k minors Dh ̸= 0, Dk ̸= 0 and all
intermediate minors are equal to zero, i.e., Dh+1 = . . . = Dk−1 =
0. Sign is assigned to these zero determinants (see [1, Ch. 10, §10,
Theorem 24])

(16) signDh+j = (−1)
j(j−1)

2 signDh, 1 6 j 6 k − 1.

Theorem 6. The number of different real zeros of f with real coeffi-
cients is equal to the difference between the number of constant signs
and the number of sign changes in the series D−1, D0, D1, . . . , Dp−1.

Example 2. Let us consider the function f(z) = (1− z)ez, f(0) = 1.
The order of growth is ρ = 1. Then

ln f(z) = z + ln(1− z) = 2z +
∞∑
k=2

zk

k
.

Using Corollary 3, we obtain that σk = 1 for k > 2, i.e., rank of Hankel
matrix S is equal to 1. Then by Theorem 5 the number of roots is
equal to 1 and by Theorem 6 this root is real.
Remark 1. The above statements show that in the case of a finite
number of zeros the study of entire functions reduces to the study of
polynomials. To study other features related to the root localization in
the context of [1, 2] one need to factorize function f(z), i.e., to extract
polynomial from this function (see [10]). Roots of this polynomial
coincide with the roots of function f .
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4. Infinite number of zeros

From the previous section we obtain

Corollary 6. Function f(z) has an infinite number of zeros if and only
if the rank of the matrix S of the form (9) is infinite, where sj = σ2k0+j.

Conditions of infinite rank means by Corollary 5 that there is a
strictly increasing sequence of positive integers jk, k = 1, 2, . . ., such
that all Djk ̸= 0.

In what follows we need some properties of infinite Hankel matrices
of infinite rank.

Consider a sequence of complex numbers s0, s1, . . . , sk, . . . such that
the series

(17)
∞∑
k=1

|sk| = C < ∞.

Suppose that indices 0 6 i1 < . . . < ik, and 0 6 j1 < . . . < jk. Let
us introduce minor

S

(
i1 . . . ik
j1 . . . jk

)
.

It consists of the elements of S, standing at the intersection of the rows
i1, . . . , ik and the columns j1, . . . , jk. In particular,

Dk = S

(
0 . . . k − 1
0 . . . k − 1

)
.

Lemma 2. If condition (17) is fulfilled then the following inequalities
are true

(18) Mk =

∣∣∣∣S ( 0 . . . k − 1
j1 . . . jk

)∣∣∣∣ 6 Ck

for all j1, . . . , jk. In particular, if C = 1 then Mk 6 1. If C < 1 then

Mk → 0 under k → ∞.

Proof. We prove Lemma 2 by induction with respect to k. When
k = 1 condition (18) obviously holds. We proceed from k to k + 1.
Expanding the determinant

S

(
0 . . . k
j1 . . . jk+1

)
in the last row, we have∣∣∣∣S ( 0 . . . k

j1 . . . jk+1

)∣∣∣∣ =
∣∣∣∣∣
k+1∑
m=1

sk−1+jmS

(
0 . . . . . . . . . k − 1
j1 . . . [jm] . . . jk+1

)∣∣∣∣∣ 6
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6
k+1∑
m=1

|sk−1+jm|Ck 6 Ck+1,

taking into account that

k+1∑
m=1

|sk−1+jm| 6
∞∑
k=1

|sk| = C.

Symbol [jm] means that the determinant has no column with the num-
ber jm. �

Consider an infinite Hankel form

(19) S(x, x) =
∞∑

j,k=0

sj+kxjxk.

This double series converges absolutely, for example, when |xj| 6 j−2.
Indeed, taking into account condition (17), we have

|S(x, x)| 6 C

∞∑
j,k=0

|xj||xk| = C

(
∞∑
j=0

|xj|

)2

.

In what follows we assume that all Dj ̸= 0. Examples of such matri-
ces we present later.

Consider the truncated Hankel matrix Sp of the form (13) and trun-
cated Hankel form Sp(x, x) of the form (14).

Reduction of quadratic forms to the sum of the squares gives (see [1,
Ch. 10, §3])

(20) Sp(x, x) =

p−1∑
k=0

1

Dk−1Dk

(X
(p)
k )2,

where

X
(p)
k =

p−1∑
q=k

S

(
0 . . . k − 1 k
0 . . . k − 1 q

)
xq.

Lemma 2 implies that

|X(p)
k | 6 Ck

p−1∑
q=k

|xq|.

Setting

|xq| 6
1

q2
,



14

we find that for such xq there exists a limit

lim
p→∞

X
(p)
k = Xk =

∞∑
q=k

S

(
0 . . . k − 1 k
0 . . . k − 1 q

)
xq.

On the other hand, under the same xq there exists a limit

lim
p→∞

Sp(x, x) = S(x, x).

Besides
|Xk| 6 C1C

k,

where

C1 =
∞∑
j=1

1

j2
.

Therefore we have

(21) S(x, x) =
∞∑
k=0

1

Dk−1Dk

X2
k .

Note that in view of identity (20) when squaring Xk and substituting
the result into (21), each product xjxk in S(x, x) contains only a finite
number of terms.

Thus, we obtain the following statement.

Proposition 2. If Hankel matrix S of the form (9) satisfies condition
(17) and all Dp ̸= 0 then relation (21) holds, where series

Xk =
∞∑
q=k

S

(
0 . . . k − 1 k
0 . . . k − 1 q

)
xq, k = 0, . . . .

is absolutely convergent when |xq| 6 1
q2
.

Let us write equality (21) in another form

S(x, x) =
∞∑
k=0

Dk

Dk−1

Y 2
k ,

where

(22) Yk =
1

Dk

∞∑
q=k

S

(
0 . . . k − 1 k
0 . . . k − 1 q

)
xq.

Let us treat system (22) as an infinite system of equations with
respect to xp, p = 0, 1, . . . . Let us denote the infinite matrix of this
system as A. Elements of the matrix are denoted as aj,k. The matrix
is upper triangular with unit main diagonal.
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Consider cofactors A(j, k) to elements aj,k of matrix A. These co-
factors are well defined, since below a certain line there is unit on the
main diagonal. Then the Laplace formula shows that all A(j, k) are
determinants of a finite matrix. It is clear that A(j, j) = 1, A(j, k) = 0
for j > k. Let us consider an infinite matrix B that consists of elements
A(k, j). This is also an upper triangular matrix. Multiplying matrix A
by B according to the rule of matrix multiplication, we find that sums

∞∑
j=1

aj,kA(j, s)

are finite, they are equal to 1 if s = k and they are equal to 0 if s ̸= k.
This follows from the rule for finding the finite inverse matrix with unit
determinant. Therefore

AB = BA = I,

where I is the infinite identity matrix.
Multiplying equality (22) by B, we obtain expressions for xq in term

of infinite series with respect to Yk. These series obviously converge by
Proposition 2.

Let us consider the entire function of finite order of growth ρ of the
form (1) with an infinite number of zeros α1, . . . , αn, . . ., power sums
σk of the form (11) and sj = σ2k0+j. Let us check whether condition
(17) is fulfilled for sj. We have

∞∑
k=1

|sk| =
∞∑
k=0

∣∣∣∣∣
∞∑
j=1

1

α2k0+k
j

∣∣∣∣∣ 6
∞∑
k=0

∞∑
j=1

1

|αj|2k0+k
=

=
∞∑
j=1

∞∑
k=0

1

|αj|2k0+k
=

∞∑
j=1

1

|αk|2k0

∞∑
k=1

1

|αj|k
=

∞∑
j=1

1

|αj|2k0
· 1

|αj| − 1
,

if all |αj| > 1.
The following inequality holds

1

|αj| − 1
6 1

|α1| − 1

by virtue of monotonically increasing sequence of absolute values |αj|.
Therefore, series (17) converges and

∞∑
k=1

|sk| 6
1

|α1| − 1
·

∞∑
j=1

1

|αj|2k0
= C.

Remark 2. If some of the roots |αj| 6 1 then we can consider the
function f(rz), where r > 0. Zeros of this function are αj/r. Therefore,
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for sufficiently small r, they are greater than 1 in absolute value. Then
sums σk are multiplied by rk and minors dp are multiplied by r2k0+p(p−1).
As this takes place, determinants dp are not equal to zero and their signs
are not changed. Following statements are true for arbitrary f .

In what follows we assume that all |αj| > 1. Therefore, for such f
Proposition 2 is valid. Let us recall the Binet-Cauchy formula for the
product of rectangular matrices. Let

A =

a11 a12 . . . a1n
. . . . . . . . . . . .
am1 am2 . . . amn

 , and B =

b11 b12 . . . b1m
. . . . . . . . . . . .
bn1 bn2 . . . bnm

 .

Matrix

C =

 c11 c12 . . . c1m
. . . . . . . . . . . .
cm1 cm2 . . . cmm

 ,

is C = A · B, then the next formula of Binet-Cauchy is true (see, e.g.,
[1, Ch. 1, §2])
(23)

detC =
∑

16k1<k2<...<km6n

A

(
1 2 . . . m
k1 k2 . . . km

)
·B
(
k1 k2 . . . km
1 2 . . . m

)
.

Suppose that A and B are infinite rectangular matrices of the form

A =

a11 a12 . . . a1n . . .
. . . . . . . . . . . . . . .
am1 am2 . . . amn . . .

 , B =


b11 b12 . . . b1m
. . . . . . . . . . . .
bn1 bn2 . . . bnm
. . . . . . . . . . . .

 .

Lemma 3. If series

(24)
∞∑
n=1

ak1n · bnk2

converges absolutely for all 1 6 k1, k2 6 m, then we have the formula
(25)

detC =
∑

16k1<k2<...<km

A

(
1 2 . . . m
k1 k2 . . . km

)
·B
(
k1 k2 . . . km
1 2 . . . m

)
and the resulting series converges absolutely.

To prove equality (25) we apply the Binet-Cauchy formula (23) to
finite submatrices of matrix A of order (m×n) and to finite submatrices
of matrix B of order (n×m) and then we take the limit n → ∞. The
convergence of the resulting series ensures the convergence of series
(24). �



17

For function f we introduce infinite matrix ∆ with elements

δkj =
1

α2k0+k
j

, k, j = 0, 1, . . . k . . . ,

and ∆′ is the transpose of matrix ∆.
Suppose that matrix ∆m consists of the first m rows of the matrix

∆.

Proposition 3. Determinants Dm are represented in the form

(26) Dm =
∑

16k1<k2<...<km

[
∆m

(
1 2 . . . m
k1 k2 . . . km

)]2
and this series converges absolutely.

Proof. We apply formula (25) to the matrices ∆m and ∆′
m. We use

the following facts: matrix and its transpose have the same determinant
and

sk = σ2k0+k =
∞∑
j=1

1

α2k0+k
j

.

Therefore, sj+k is infinite inner product of infinite rows of the matrix
∆m and the infinite columns of the matrix ∆′

m.
�

Theorem 7. Let us assume that function f(z) has real coefficients.
All zeros of function f are real if and only if Dm > 0, m = 0, 1, . . ..

Proof. Suppose that all zeros of f(z) are real. Using formula (26),
we obtain that Dm is the sum of non-negative minors, some of them
are strictly positive, since they are Vandermonde determinants with
different columns.

Let all Dm > 0. Consider an infinite Hankel form S(x, x) of the form
(19) with real variables xj. We previously obtained that this form is
absolutely convergent double series when |xk| 6 k−2, k > 1.

Assume that β1, β2, . . . , βk . . . are distinct zeros of function f with
multiplicities n1, n2, . . . , nk, . . ., respectively.

Let us transform the form S(x, x):

S(x, x) =
∞∑

j,k=0

sj+kxjxk =
∞∑

j,k=0

∞∑
m=1

nm

β2k0+j+k
m

xjxk =

=
∞∑

m=1

∞∑
j,k=0

nm

β2k0+j+k
m

xjxk =
∞∑

m=1

nm

β2k0
m

(
x0 +

x1

βm

+ . . .+
xk

βk
m

+ . . .

)2

.
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Permutation of the order of summation is justified since correspond-
ing series converge.

Let us denote

Zm =
1

βk0
m

(
x0 +

x1

βm

+ . . .+
xk

βk
m

+ . . .

)
,

then we find that

(27) S(x, x) =
∞∑

m=1

nmZ
2
m.

If a zero βm is real then Z2
m > 0. If a zero is complex then the sum

of squares Z2
m+Z

2

m = P 2
m−Q2

m, where Pm = ReZm and Qm = ImZm.
This means that a positive square in representation (27) corresponds
to a real zero and difference of squares corresponds a complex zero.
Relation (27) can be written as

(28) S(x, x) =
∞∑

m=1

rmF
2
m,

where rm is 1 or −1 and linear infinite forms Fm are real.
One should show that if all Dm > 0, then all rm = 1 in (28). Suppose

that rm0 = −1 for some m0. Consider the system of equations
(29)
F0 = 0, . . . Fm0−1 = 0, Fm0+1 = 0, . . . Fk = 0 for sufficiently large k.

All equations in this system are different.
Let us rearrange all xj with j > k to the right side of system (29).

Then we have some convergent series in the right side of the system.
Coefficients at x0, . . . , xk−1 form the Vandermonde matrix (or its real
or imaginary part). Therefore, we express x0, . . . , xk−1 from system
(29) in the form of convergent series of other variables. Substituting
x0, . . . , xk−1 into system (29), we obtain that the right side is equal to
zero.

It is clear that on substitution these solutions into Fm0 this form
cannot be identically equal to zero because this equation is not a con-
sequence of the system of equations (29). Then there are exist xk, . . .,
such that Fm0 ̸= 0.

Let us recall that the form Fm follows from form Zm and all variables
|xj| are bounded by a constant c1. Then we obtain

|Zm| 6
nm

|βm|2k0

(
|x0|+

∣∣∣∣ x1

βm

∣∣∣∣+ . . .+

∣∣∣∣ xk

βk
m

∣∣∣∣+ . . .

)
6
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6 c1nm

|βm|2k0

(
1 +

∣∣∣∣ 1βm

∣∣∣∣+ . . .+

∣∣∣∣ 1βk
m

∣∣∣∣+ . . .

)
=

c1
|βm|2k0

nm

|βm| − 1
.

We assume that |βm| > 1 for all m. Therefore,

|Zm| 6
c1nm

|βm|2k0+1
.

Then

(30)
∞∑

m=p

|Zm| 6 c1

∞∑
m=p

1

|αm|2k0+1
= δ.

The last expression is the remainder of the convergent series, so it
can be made arbitrarily small uniformly with respect to xj. Choosing
sufficiently large k such that δ < |Fm0 |, we find that S(x, x) has a
negative value in this case.

At the same time we have representation (21) for S(x, x). It shows
that by the conditions of the theorem it is non-negative. This contra-
dicts our assumption that rm0 = −1. �
Example 3. Let us consider the following entire function f(z) of order

ρ =
1

2
:

f(z) =
sin

√
z√

z
=

∞∑
n=0

(−1)n
zn

(2n+ 1)!
.

It is known (see, e.g., [11, Ch. 12, Issue 449]) that

(31) ln
sin

√
z√

z
= −

∞∑
n=1

22n−1Bn

(2n)!
· z

n

n
,

where Bn are Bernoulli numbers (see, e.g., [11, Ch. 12, Issue 449]).
They are all positive.

It follows from (3) and Corollary 2 that

σn =
22n−1Bn

(2n)!
when n > 1.

Let us set sn = σn+1, Dm is defined as

Dm =

∣∣∣∣∣∣∣∣
s0 s1 . . . sm−1

s1 s2 . . . sm
. . . . . . . . . . . .
sm−1 sm . . . s2m−1

∣∣∣∣∣∣∣∣ ,
and B1 =

1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, B5 =

5

66
, . . . .
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We factor out terms to the power of 2 from determinant Dm and find
that the sign of Dm coincides with the sign of the determinant

∆′
m =

∣∣∣∣∣∣∣∣∣
B1

2!
B2

4!
. . . Bm

(2m)!
B2

4!
B3

6!
. . . Bm+1

(2m+2)!

. . . . . . . . . . . .
Bm

(2m)!
Bm+1

(2m+2)!
. . . B2m

(4m)!

∣∣∣∣∣∣∣∣∣
Therefore, ∆′

1 = s0 =
1

12
> 0 and

∆′
2 =

∣∣∣∣ 1
12

1
30·24

1
30·24

1
42·720

∣∣∣∣ = 1

12 · 720

∣∣∣∣1 1
60

1 1
42

∣∣∣∣ > 0.

Similarly we have

∆′
3 =

∣∣∣∣∣∣
1
12

1
30·24

1
42·720

1
30·24

1
42·720

1
30·8!

1
42·720

1
30·8!

5
66·(10)!

∣∣∣∣∣∣ = c

∣∣∣∣∣∣
1 1

30
1

210
1 1

21
1

140
1 1

20
1
99

∣∣∣∣∣∣ > 0,

where c > 0.
This is fully consistent with Theorem 7. Moreover, Theorem 7 shows

that all Dm composed of Bernoulli numbers are positive.
Let us consider the case when function f(z) has only imaginary zeros.

In the case of polynomials the condition can be found in terms of inners
wherein they have imaginary roots [2, §2.4].

Theorem 8. Let an entire function f(z) of the form (1) with real
Taylor coefficients has the order of growth ρ < 2. For function f has
only imaginary roots it is necessary and sufficient that the determinants

(32) ∆m =

∣∣∣∣∣∣∣∣
s0 s2 . . . s2m−2

s2 s4 . . . s2m
. . . . . . . . . . . .

s2m−2 s2m . . . s4m−2

∣∣∣∣∣∣∣∣ ,
are positive for all m and conditions

(33)
n∑

m=0

bn−m(−b1)
m

m!

{
= 0 for even n,

> 0 for odd n.

are satisfied.

Proof. Let us assume that function f has imaginary zeros ±iγj,
γj ∈ R. Then the Taylor decomposition of the canonical product of
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f contains only even powers of z. Indeed, the product in (5) has the
form(
1− z

iγn

)
e

z
iγn

+ z2

2(iγn)2
+...+ zp

p(iγn)p ·
(
1 +

z

iγn

)
e

z
−iγn

+ z2

2(−iγn)2
+...+ zp

p(−iγn)p =

=

(
1 +

z2

γ2
n

)
e

z2

−γ2n
+...+

(
zp

p(iγn)p
+

(−z)p

p(iγ
p
n)

)
.

So this product depends on z2. Therefore, the canonical product (6)
that corresponds to function f , takes the form:

Φ(z) =
∞∑
j=0

cjz
j =

∞∑
j=0

c2jz
2j.

We introduce the function

H(w) =
∞∑
j=0

c2jw
j.

Zeros of this function are only numbers −γ2
n. Therefore, H(w) has only

real zeros. Function H(w) is also an entire function of finite order of
growth and the order is hulf of the order of the canonical product Φ(z).
So in our case the order of growth of the function H(w) less than one
hulf.

Let us consider the power sums for the function H(w):
∞∑
n=1

(
−γ−2

n

)k
.

It is clear that this power sum is equal to the sum of σ2k of function
f(z).

Since by Theorem 2 p 6 ρ and q 6 ρ then in our case p = 0 and
q = 0.

Therefore, Hadamard decomposition of the function H(w) has the
form

H(w) =
∞∏
n=1

(
1− w

βn

)
.

It is clear that if all zeros of this function are real they are negative
if and only if that the Taylor expansion of H(w) has non-negative
coefficients c2j. These coefficients are the coefficients of the Taylor
expansion for the canonical product Φ(z).

The necessary condition that all zeros are imaginary is that the Tay-
lor coefficients of the canonical product Φ(z) have non-negative values
and odd-numbered coefficients are equal to 0.
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Let us find condition on the Taylor coefficients of the function f(z)
which guarantees non-negativity of the coefficients of the canonical
product. Because the order of growth of the function is ρ < 2 then its
Hadamard expansion takes the form:

f(z) = ed1z · Φ(z),

where d1 < 2 and may be equal to zero.
Using Proposition 2, Lemma 1 and (3), we find that d1 = b1.
Then Φ(z) = e−b1z · f(z). Therefore,

Φ(z) =
∞∑

m=0

(−b1z)
m

m!
·
∑
k=0

bkz
k =

∞∑
n=0

zn
n∑

m+k

bk(−b1)
m

m!
=

=
∞∑
n=0

zn
n∑

m=0

bn−m(−b1)
m

m!
.

So the Taylor coefficients of the canonical product Φ(z) are

cn =
n∑

m=0

bn−m(−b1)
m

m!
.

It follows from the last relation and Theorem 7 that the theorem is
proved. �
Remark 3. If b1 = 0 then function f(z) coincides with its canonical
product and condition (33) is equivalent to

b2n > 0, b2n−1 = 0.

Recall the definition of a type of entire function.
Let f(z) have a finite order ρ. If there exists a positive number K

such, that

f(z) = O(eKRρ

) for |z| = R → +∞
then the function f has a finite type.

The infimum of such numbers K is called the type of function and
denotes κ.

If function f(z) is an entire function either of order ρ < 1 or of order
ρ = 1 and κ = 0 then its Hadamard expansion has the form (see, e.g.,
[7, Ch. 7, §2])

f(z) =
∞∏
n=1

(
1− z

αn

)
.

Therefore, the following statement is true
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Corollary 7. Let a function f have real coefficients and let it be an
entire function either of order ρ < 1 or of order ρ = 1 and κ = 0. All
zeros of function f are imaginary if and only if all minors of the form
(32) are positive, the even-numbered Taylor coefficients of function f
are non-negative and the odd-numbered coefficients are zero.

Proof. In this case the entire function coincides with its canonical
product, the previous considerations include this statement. �
Example 4. Let us consider the following function

f(z) =
sinh z

z
=

∞∑
k=0

z2k

(2k + 1)!
.

This function has the order of growth ρ = 1 and it coincides with
its canonical product. The even-numbered coefficients of the Taylor
expansion of f(z) are positive and the odd-numbered coefficients are
zero. Therefore, the necessary condition of Theorem 8 is satisfied.

Consider the determinants of Theorem 8. Formula (31) gives

ln
sinh z

z
= ln

sin iz

iz
= −

∞∑
n=1

(−1)n22n−1Bn

(2n)!
· z

2n

2n
.

Therefore, the power sums a(x) with even numbers are

σ2n =
(−1)n22n−1Bn

(2n)!
under n > 1,

and ssn = σ2n+2. Determinant ∆m in Example 3 takes the form

∆′
m =

∣∣∣∣∣∣∣∣∣
B1

2!
−B2

4!
. . . (−1)mBm

(2m)!
−B2

4!
B3

6!
. . . Bm+1

(2m+2)!

. . . . . . . . . . . .
(−1)mBm

(2m)!
(−1)m+1Bm+1

(2m+2)!
. . . B2m

(4m)!

∣∣∣∣∣∣∣∣∣ .
The element in this determinant that stands at the intersection of j-
th row and s-th column is negative if and only if j + s is odd. Then
this determinant is equal to the determinant ∆m from Example 3. In
fact, the product of elements taken one by one from each row and each
column contains an even number of elements with odd sums of row
number and column number.

Therefore, this example is reduced to Example 3.
Now consider the case when Dm are positive or negative. Suppose,

as before, that all Dm ̸= 0. We introduce the sequence

(34) D−1D0, D0D1, . . . , DmDm+1, . . . ,

Recall that D−1 = 1.
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Theorem 9. Let us assume that function f has real coefficients. If
sequence (34) contains exactly m negative numbers then function f has
m distinct pairs of complex conjugate zeros and an infinite number of
real zeros. If sequence (34) has an infinite number of negative numbers
then function f(z) has an infinite number of complex conjugate zeros.

The proof essentially repeats the proof of Theorem 7 and the argu-
ments from [1, Ch. 10, §1]. If sequence (34) contains exactlym negative
numbers then we choose sufficiently big k and k > m. Suppose that the
sequence Z1, . . . , Zk contains s squares with negative sign and s > m.
Then we set to zero in expression (21) those Xk which are included in
(21) with negative sign. There are exactly m such equations. We set to
zero squares with positive sign in relation (28). There are exactly k−s
such equations and (k − s) + m < k. Then there is no zero solution
of these equations. Using inequality (30), we see that expression (21)
is non-negative and expression (28) is strictly less than zero. This is
impossible. The case s < m is treated similarly. It is clear that if there
is an infinite number of negative numbers in sequence (34) then the
number of complex zeros is infinite. �
Remark 4. Sequence (34) has always an infinite number of positive
elements, while the number of real zeros of function f(z) can be finite
or infinite. Therefore, this sequence cannot be used to obtain condition
of existence of a finite number of real zeros.
Remark 5. In Remark 2 we note that if the condition |αj| > 1 is
not satisfied for all j then the transformation z = rw does not change
the signs of all Dm. In addition, under such transformation real roots
remain real and complex roots remain complex so Theorems 7–9 remain
true.
Remark 6. If sequence (34) has zero elements then theorem 9 remains
true if signs of sequence elements are arranged according to the Frobe-
nius rule (16). We also note that we have excluded the case where Dm

are equal to zero, starting from a certain number, since the number of
function zeros is infinite.
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