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An approach to analysis of magneto-optical ellipsometry measurements is presented. A two-layer model
of ferromagnetic reflective films is in focus. The obtained algorithm can be used to control optical and
magneto-optical properties during films growth inside vacuum chambers.
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Recently it has become necessary to synthesize new materials that would be applied in spin-
tronics devices. This field of study has significantly developed and it dictates the properties
that materials should have in order to be used for its purposes. It is well-known that the sim-
plest method of generating a spin-polarised current in a metal is to pass the current through
a ferromagnetic material. That is why, one of the perspective materials for spintronics is a
ferromagnetic/semiconductor two-layered structure [1].

In order to synthesize them and control their properties we have to use the methods that
are non-destructive, precise, easy to use, applicable for in situ investigations in the high-vacuum
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chambers of molecular beam epitaxy. We suggest that magneto-optical ellipsometry is a technique
that reflects these requirements. Magneto-optical ellipsometry usually combines the features of
conventional ellipsometry and of magneto-optical Kerr effect measurements [2–6]. Applied to the
sample magnetic field changes the ellipsometric parameters, this difference can be examined and
used to investigate magneto-optic properties of the sample.

In this work we give detailed explanation how to analyse magneto-ellipsometric data and
obtain information on magneto-optical and optical properties of the material.

1. General approach to magneto-ellipsometric data process-
ing

Our approach is based on the analysis of a well-known equation that relates the experimental
ellipsometric parameters ψ and ∆ with complex reflection coefficients corresponding to in-plane
(Rp) and out-of-plane (RS) light polarizations [7–8]. Ellipsometric parameters ψ and ∆ can be
presented as a sum of conventional parameters ψ0 and ∆0 measured without external magnetic
field and additional ellipsometric parameters δψ and δ∆ that are the result of magnetic field
application. We suggest to consider real and imaginary parts of these coefficients, so we mark
them by ′ and ′′ respectively:

tan(ψ0 + δψ) exp(i(∆0 + δ∆)) = RpR
−1
S = (R′p − iR′′p)(R′S − iR′′S)−1. (1)

We are interested in magneto-optical properties of the sample. That is why it seems to be
reasonable to present reflection coefficients as a sum of magnetic (subscript 1) and non-magnetic
(subscript 0) summands [9–11]:

Rp = Rpp +RpS = R′p0 +R′p1 − i(R′′p0 +R′′p1), (2)

RS = RSS +RSp = RS0 = R′S0 − iR′′S0. (3)

This paper focuses on the case of transverse magneto-optic Kerr effect when the magnetization
is perpendicular to the plane of incidence and parallel to the surface of the sample. That is why
there are no magnetic summands for s-plane polarization.

From (1-3) four equations can be obtained. Two of them correspond to non-magnetic condi-
tion:

tanψ0 =

√
(R′p0R

′
S0 +R′′S0R

′′
p0)2 + (R′′S0R

′
p0 −R′′p0R′S0)2

R
′2
S0 +R

′′2
S0

, (4)

∆0 = arctan
R

′′

S0R
′

p0 −R
′′

p0R
′

S0

R
′
p0R

′
S0 +R

′′
S0R

′′
p0

, (5)

and two equations demonstrate the influence of an external magnetic field:

δ∆ = ∆−∆0 = arctan
R

′′

S0(R
′

p0 +R
′

p1)−R′

S0(R
′′

p0 +R
′′

p1)

R
′
S0(R

′
p0 +R

′
p1) +R

′′
S0(R

′′
p0 +R

′′
p1)
−∆0, (6)

δψ = ψ − ψ0 = arctan (F tan (ψ0))− ψ0, (7)

where F is a multiplier in

tan (ψ0 + δψ) = F tanψ0 =
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= tan(ψ0)

√
1 +

(R
′2
p1 +R

′′2
p1 + 2(R

′
p0R

′
p1 +R

′′
p0R

′′
p1))(R

′2
S0 +R

′′2
S0)

(R
′
p0R

′
S0 +R

′′
S0R

′′
p0)2 + (R

′′
S0R

′
p0 −R

′′
p0R

′
S0)2

. (8)

These equations do not depend on the number of layers in a sample, so can be used for every
type of reflective nanostrustures models. Below, a two-layer model is presented.

2. Data processing for the case of a two-layer model

As it was mentioned above, ferromagnetic/semiconductor two-layer structures are a subject of
interest nowadays. So in this chapter let us discuss a model consisting of an upper ferromagnetic
layer 1 (the refraction index N1 = n1− ik1), a middle non-magnetic layer 2 (the refraction index
N2 = n2− ik2) and a substrate 3 (the refraction index N3 = n3− ik3). The light electromagnetic
wave is incident from non-magnetic dielectric medium 0 (e.g. vacuum, characterized by the
refraction index N0 = n0 − ik0) onto the upper layer. In the setup, a Cartesian coordinate
system is defined with the x axis normal to the interfaces and pointing into the substrate from
the sample surface. The y and x axis lie in the plane of incidence. We consider T-configuration
(transverse) in which magnetization is z-axis directed, i.e perpendicular to the plane of incidence
and parallel to the surface. So YX plane is a plane of incidence, YZ plane is a boundary plane.

For a two-layer model it is necessary to consider each interface (0-1, 1-2, 2-3) as each of them
impacts the values of ellipsometric angles. The purpose of the data processing is to characterize
a ferromagnetic layer.

The first step is carrying out ellipsometric and magneto-ellipsometric measurements. Here
we do not focus on ellipsometric data analysis as there is a lot of research in this field [7, 8,
12]. So from ellipsometric measurements we can find complex refractive indices N0, N1, N2, N3,
thicknesses of both layers, while magneto-ellipsometric parameters spectra are necessary for
magneto-optical properties study of a ferromagnetic layer.

Fresnel coefficients that reflect magneto-optical properties can be derived from the scattering
matrix:

Ŝ = Î01L̂1Î12L̂2Î23, (9)

where Îab is an interface matrix and L̂c is a layer matrix [7].

RS =
(S21)S
(S11)S

, (10)

Rp =
(S21)p
(S11)p

, (11)

RS =
r01S + r12Se

−i2β1 + r01Sr12Sr23Se
−i2β2 + r23Se

−i2(β1+β2)

1 + r01Sr12Se−i2β1 + r12Sr23Se−i2β2 + r01Sr23Se−i2(β1+β2)
, (12)

Rp =
r01p + r12pτ01pe

−i2β1 − r01pr21pr23pe−i2β2 + r23pτ01pτ12pe
−i2(β1+β2)

1− r10pr12pe−i2β1 − r21pr23pe−i2β2 − r10pr23pτ12pe−i2(β1+β2)
, (13)

where
τ01p = t10pt01p − r01pr10p, (14)

τ12p = t21pt12p − r12pr21p. (15)

So, in order to process magneto-ellipsometric data the following expressions are necessary:

r01p =
N1 cosϕ0 −N0 cosϕ1

N1 cosϕ0 +N0 cosϕ1
− i 2QN2

0 sinϕ0 cosϕ0

(N1 cosϕ0 +N0 cosϕ1)2
, (16)
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r12p =
N2 cosϕ1 −N1 cosϕ2

N2 cosϕ1 +N1 cosϕ2
− i 2QN2

1 sinϕ1 cosϕ1

(N2 cosϕ1 +N1 cosϕ2)2
, (17)

r23p =
N3 cosϕ2 −N2 cosϕ3

N3 cosϕ2 +N2 cosϕ3
, (18)

r10p =
N0 cosϕ1 −N1 cosϕ0

N0 cosϕ1 +N1 cosϕ0
+ i

2QN2
1 sinϕ1 cosϕ1

(N0 cosϕ1 +N1 cosϕ0)2
, (19)

r21p =
N1 cosϕ2 −N2 cosϕ1

N1 cosϕ2 +N2 cosϕ1
+ i

2QN2
2 sinϕ2 cosϕ2

(N1 cosϕ2 +N2 cosϕ1)2
, (20)

r01S =
N0 cosϕ0 −N1 cosϕ1

N0 cosϕ0 +N1 cosϕ1
, (21)

r12S =
N1 cosϕ1 −N2 cosϕ2

N1 cosϕ1 +N2 cosϕ2
, (22)

r23S =
N2 cosϕ2 −N3 cosϕ3

N2 cosϕ2 +N3 cosϕ3
, (23)

t01p =
2N0 cosϕ0

N1 cosϕ0 +N0 cosϕ1
+ i

2QN3
0 sinϕ0 cosϕ0

N1(N1 cosϕ0 +N0 cosϕ1)2
, (24)

t10p =
2N1 cosϕ1

N1 cosϕ0 +N0 cosϕ1
− i 2QN3

1 sinϕ1 cosϕ1

N0(N1 cosϕ0 +N0 cosϕ1)2
, (25)

t12p =
2N1 cosϕ1

N2 cosϕ1 +N1 cosϕ2
+ i

2QN3
1 sinϕ1 cosϕ1

N2(N2 cosϕ1 +N1 cosϕ2)2
, (26)

t21p =
2N2 cosϕ2

N2 cosϕ1 +N1 cosϕ2
− i 2QN3

2 sinϕ2 cosϕ2

N1(N2 cosϕ1 +N1 cosϕ2)2
, (27)

β1 =
2π

λ
N1 cosϕ1d1, (28)

β2 =
2π

λ
N2 cosϕ2d2, (29)

where β1 and β2 are phase thicknesses of layer 1 and layer 2, respectively, d1 and d2 are thicknesses
of layers 1 and 2. Subscripts 01, 12, 23 correspond to the wave propagation from medium 0 to
medium 1, from 1 to 2 and from 2 to 3 respectively, while subscripts 10 and 21 correspond
to the backward wave propagation. Indices r are refractive indices for the mentioned above
interfaces, indices t are transmission coefficients. Angles ϕ1 and ϕ2 are related with ϕ0 (the
angle of incidence) by Snell’s law. Q is a magneto-optical coupling parameter that is responsible
for non-diagonal elements of dielectric tensor. It means that if we know this parameter we can
fully describe the dielectric permitivity, not only diagonal elements. Hereinafter we present the
formulae necessary for identifying Q from magneto-ellipsometric measurements. Let us rewrite
(12-18) in the same manner as (2, 3):

r01S = (R′S0)01 − i(R′′S0)01, (30)

r12S = (R′S0)12 − i(R′′S0)12, (31)

r23S = (R′S0)23 − i(R′′S0)23, (32)

r23p = (R′p0)23 − i(R′′p0)23 = rr23 − i ri23, (33)

r01p = (R′p0)01 + (R′p1)01 − i((R′′p0)01 + (R′′p1)01) = rr01 − i ri01, (34)
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r12p = (R′p0)12 + (R′p1)12 − i((R′′p0)12 + (R′′p1)12) = rr12 − i ri12, (35)

r23p = (R′p0)23 + (R′p1)23 − i((R′′p0)23 + (R′′p1)23) = rr23 − i ri23, (36)

r10p = (R′p0)10 − (R′p1)10 − i((R′′p0)10 − (R′′p1)10) = rr10 − i ri10, (37)

r21p = (R′p0)21 − (R′p1)21 − i((R′′p0)21 − (R′′p1)21) = rr21 − i ri21, (38)

t01p = (T ′p0)01 + (T ′p1)01 − i((T ′′p0)01 + (T ′′p1)01) = tr01 − i ti01, (39)

t12p = (T ′p0)12 + (T ′p1)12 − i((T ′′p0)12 + (T ′′p1)12) = tr12 − i ti12, (40)

t10p = (T ′p0)10 − (T ′p1)10 − i((T ′′p0)10 − (T ′′p1)10) = tr10 − i ti10, (41)

t21p = (T ′p0)21 − (T ′p1)21 − i((T ′′p0)21 − (T ′′p1)21) = tr21 − i ti21, (42)

where (R′s0)01, (R
′′
s0)01, (R

′
p0)01, (R

′′
p0)01, (R

′
p1)01, (R

′′
p1)01 correspond to

R′s0, R
′′
s0, R

′
p0, R

′′
p0, R

′
p1, R

′′
p1 in the model of a homogeneous semi-infinite medium, respec-

tively [11]. Subscript 01 denotes the electromagnetic wave incidence from ambient medium
0 onto layer 1. Indices (R′s0)12, (R

′′
s0)12, (R

′
p0)12, (R

′′
p0)12, (R

′
p1)12, (R

′′
p1)12 are also calculated

by formulae for the model of a homogeneous semi-infinite medium, the only difference is
that subscript 12 denotes the electromagnetic wave incidence from layer 1 onto layer 2 that
leads to the following changes in the formulae for the model of a homogeneous semi-infinite
medium: cosϕ0 → cosϕ1, cosϕ1 → cosϕ2, sinϕ0 → sinϕ1, n1 → n2, n0 → n1, k1 → k2,
k0 → k1. Likewise, indices (R′p0)10, (R

′′
p0)10, (R

′
p1)10, (R

′′
p1)10 describe the electromagnetic wave

propagation from layer 1 to medium 0: cosϕ0 ↔ cosϕ1, sinϕ0 ↔ sinϕ1, n0 ↔ n1, k0 ↔ k1.
Indices (R′p0)21, (R

′′
p0)21, (R

′
p1)21, (R

′′
p1)21 correspond to the electromagnetic wave propagation

from layer 2 to layer 1: cosϕ0 → cosϕ2, sinϕ0 → sinϕ2, n0 → n2, k0 → k2. Finally, indices
(R′s0)23, (R

′′
s0)23, (R

′
p0)23, (R

′′
p0)23, (R

′
p1)23, (R

′′
p1)23 describe the electromagnetic wave incidence

from layer 2 on substrate 3: cosϕ0 → cosϕ2, cosϕ1 → cosϕ3, sinϕ0 → sinϕ2, n1 → n3,
n0 → n2, k1 → k3, k0 → k2.

Transmission coefficients necessary for data processing are the following:

(T ′p0)01 = 2
(n0n1 + k0k1)(a2 + c2) + (n20 + k20)(ab+ cd)

A2
3 +B2

3

, (43)

(T ′′p0)01 = 2
(n20 + k20)(ad− bc) + (n1k0 − n0k1)(a2 + c2)

A2
3 +B2

3

, (44)

(T ′p1)01 = 2
Q1(pq + rs)−Q2(pr − sq)

(n21 + k21)(A2
3 +B2

3)2
, (45)

(T ′′p1)01 = 2
Q1(pr − sq) +Q2(pq + rs)

(n21 + k21)(A2
3 +B2

3)2
, (46)

where
A3 = n1a+ k1c+ n0b+ k0d, (47)

B3 = k1a− n1c+ k0b− n0d, (48)

p = N(3n20k0 − k30) + P (n30 − 3n0k
2
0), (49)

q = n1(A2
3 −B2

3)− 2A3B3k1, (50)

r = k1(B2
3 −A2

3)− 2A3B3n1, (51)

s = N(n30 − 3n0k
2
0)− P (3n20k0 − k30), (52)
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a = Re(cosϕ0), (53)

b = Re(cosϕ1), (54)

c = Im(cosϕ0), (55)

d = Im(cosϕ1), (56)

N = Re(sinϕ0)a− Im(sinϕ0)c, (57)

P = −Re(sinϕ0)c− Im(sinϕ0)a. (58)

Transmission coefficients with subscripts 10, 12, 21 correspond to the electromagnetic wave
propagation from layer 1 to medium 0, from layer 1 to layer 2, from layer 2 to layer 1, respectively.
The changes in the formulae are the same as proposed for refractive indices.

Let us take into account N0 = n0 − ik0, N1 = n1 − ik1, N2 = n2 − ik2, Q = Q1 − iQ2 and
compare expressions (12, 13) with (2, 3). Thus we obtain expressions for R′p0, R′′p0, R′p1, R′′p1, R′s0
and R′′s0 in terms of numerators and denominators:

RS0 =
numeratorRS0
denominatorRS0

≡ Re(n(RS0))− i Im(n(RS0))

Re(d(RS0))− i Im(d(RS0))
, (59)

Rp0 =
Re(n(Rp0))− i Im(n(Rp0))

Re(d(Rp0))− i Im(d(Rp0))
, (60)

Rp =
Re(n(Rp))− i Im(n(Rp))

Re(d(Rp))− i Im(d(Rp))
, (61)

where n stands for numerator and d – for denominator. As a result, we have

R′p0 =
Re(n(Rp0))Re(d(Rp0)) + Im(n(Rp0)) Im(d(Rp0))

(Re(d(Rp0)))2 + (Im(d(Rp0)))2
, (62)

R′′p0 =
Im(n(Rp0))Re(d(Rp0))− Im(d(Rp0))Re(n(Rp0))

(Re(d(Rp0)))2 + (Im(d(Rp0)))2
, (63)

R′p1 =
Re(n(Rp))Re(d(Rp)) + Im(n(Rp)) Im(d(Rp))

(Re(d(Rp)))2 + (Im(d(Rp)))2
−R′p0, (64)

R′′p1 =
Im(n(Rp))Re(d(Rp))− Im(d(Rp))Re(n(Rp))

(Re(d(Rp)))2 + (Im(d(Rp)))2
−R′′p0, (65)

R′S0 =
Re(n(RS0))Re(d(RS0)) + Im(n(RS0)) Im(d(RS0))

(Re(d(RS0)))2 + (Im(d(RS0)))2
, (66)

R′′S0 =
Im(n(RS0))Re(d(RS0))− Im(d(RS0))Re(n(RS0))

(Re(d(RS0)))2 + (Im(d(RS0)))2
, (67)

where the following notations are used:

Re(n(Rp0)) = (R′p0)01 + ξ1(R′p0)12 − η1(R′′p0)12 + L0112(ξ2(R′p0)23 − η2(R′′p0)23)−

−M0112(ξ2(R′′p0)23 + η2(R′p0)23) + (R′p0)23(ξ1ξ2 − η1η2)− (R′′p0)23(ξ2η1 + ξ1η2), (68)

Im(n(Rp0)) = (R′′p0)01 + η1(R′p0)12 + ξ1(R′′p0)12 + L0112(ξ2(R′′p0)23 + η2(R′p0)23)+
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+M0112(ξ2(R′p0)23 − η2(R′′p0)23) + (R′′p0)23(ξ1ξ2 − η1η2) + (R′p0)23(ξ2η1 + ξ1η2), (69)

Re(d(Rp0)) = 1 + L0112ξ1 −M0112η1 + ξ2L1223 − η2M1223+

+(ξ1ξ2 − η1η2)L0123 − (ξ2η1 + ξ1η2)M0123, (70)

Im(d(Rp0)) = L0112η1 +M0112ξ1 + ξ2M1223 + η2L1223+

+(ξ1ξ2 − η1η2)M0123 + (ξ2η1 + ξ1η2)L0123, (71)

Re(n(Rp)) = rr01 + (ξ1rr12 − η1ri12)(κ1)01 − (ξ1ri12 + η1rr12)(κ2)01−

−(rr01rr21 − ri01ri21)(ξ2rr23 − η2ri23) + (ri01rr21 + rr01ri21)(ξ2ri23 + η2rr23)+

+(rr23(ξ1ξ2 − η1η2)− ri23(ξ2η1 + ξ1η2))((κ1)01(κ1)12 − (κ2)01(κ2)12)−

−(ri23(ξ1ξ2 − η1η2) + rr23(ξ1η2 + η1ξ2))((κ1)01(κ2)12 + (κ1)12(κ2)01), (72)

Im(n(Rp)) = ri01 + (ξ1ri12 + η1rr12)(κ1)01 + (ξ1rr12 − η1ri12)(κ2)01−

−(ri01rr21 + rr01ri21)(ξ2rr23 − η2ri23)− (rr01rr21 − ri01ri21)(ξ2ri23 + η2rr23)+

+(ri23(ξ1ξ2 − η1η2) + rr23(ξ2η1 + ξ1η2))((κ1)01(κ1)12 − (κ2)01(κ2)12)+

+(rr23(ξ1ξ2 − η1η2)− ri23(ξ1η2 + η1ξ2))((κ1)01(κ2)12 + (κ1)12(κ2)01), (73)

Re(d(Rp)) = 1− ξ1(rr10rr12 − ri10ri12) + η1(ri10rr12 + rr10ri12)−

−ξ2(rr21rr23 − ri21ri23) + η2(ri21rr23 + ri23rr21)−

((κ1)12(rr10rr23 − ri10ri23)− (κ2)12(ri10rr23 + ri23rr10))(ξ1ξ2 − η1η2)+

+((κ1)12)(ri10rr23 + ri23rr10) + (κ2)12(rr10rr23 − ri10ri23))(ξ2η1 + ξ1η2), (74)

Im(d(Rp)) = −ξ1(ri10rr12 + rr10ri12)− η1(rr10rr12 − ri10ri12)−

−ξ2(ri21rr23 + rr21ri23)− η2(rr21rr23 − ri23ri21)−

((κ1)12(ri10rr23 + rr10ri23) + (κ2)12(rr10rr23 − ri23ri10))(ξ1ξ2 − η1η2)−

−((κ1)12)(rr10rr23 − ri23ri10)− (κ2)12(ri10rr23 + rr10ri23))(ξ2η1 + ξ1η2), (75)

Re(n(RS0)) = (R′S0)01 + ξ1(R′S0)12 − η1(R′′S0)12 +H0112(ξ2(R′S0)23 − η2(R′′S0)23)−

−J0112(ξ2(R′′S0)23 + η2(R′S0)23) + (R′S0)23(ξ1ξ2 − η1η2)− (R′′S0)23(ξ2η1 + ξ1η2), (76)

Im(n(RS0)) = (R′′S0)01 + η1(R′S0)12 + ξ1(R′′S0)12 +H0112(ξ2(R′′S0)23 + η2(R′S0)23)+

+J0112(ξ2(R′S0)23 − η2(R′′S0)23) + (R′′S0)23(ξ1ξ2 − η1η2) + (R′S0)23(ξ2η1 + ξ1η2), (77)
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Re(d(RS0)) = 1 +H0112ξ1 − J0112η1 + ξ2H1223 − η2J1223+

+(ξ1ξ2 − η1η2)H0123 − (ξ2η1 + ξ1η2)J0123, (78)

Im(d(RS0)) = H0112η1 + J0112ξ1 + ξ2J1223 + η2H1223+

+(ξ1ξ2 − η1η2)J0123 + (ξ2η1 + ξ1η2)H0123, (79)

ξ1 = Re(e−i2β1), (80)

η1 = − Im(e−i2β1), (81)

ξ2 = Re(e−i2β2), (82)

η2 = − Im(e−i2β2), (83)

L0112 = (R′p0)12(R′p0)01 − (R′′p0)12(R′′p0)01, (84)

M0112 = (R′p0)01(R′′p0)12 + (R′′p0)01(R′p0)12, (85)

L1223 = (R′p0)23(R′p0)12 − (R′′p0)23(R′′p0)12, (86)

M1223 = (R′p0)12(R′′p0)23 + (R′′p0)12(R′p0)23, (87)

L0123 = (R′p0)23(R′p0)01 − (R′′p0)23(R′′p0)01, (88)

M0123 = (R′p0)01(R′′p0)23 + (R′′p0)01(R′p0)23, (89)

H0112 = (R′S0)12(R′S0)01 − (R′′S0)12(R′′S0)01, (90)

J0112 = (R′S0)01(R′′S0)12 + (R′′S0)01(R′S0)12, (91)

H1223 = (R′S0)23(R′S0)12 − (R′′S0)23(R′′S0)12, (92)

J1223 = (R′S0)12(R′′S0)23 + (R′′S0)12(R′S0)23, (93)

H0123 = (R′S0)23(R′S0)01 − (R′′S0)23(R′′S0)01, (94)

J0123 = (R′S0)01(R′′S0)23 + (R′′S0)01(R′S0)23, (95)

(κ1)01 = tr10tr01 − ti10ti01 − rr01rr10 + ri01ri10, (96)

(κ2)01 = ti10tr01 + tr10ti01 − rr01ri10 − ri01rr10, (97)

(κ1)12 = tr21tr12 − ti21ti12 − rr21rr12 + ri21ri12, (98)

(κ2)12 = ti12tr21 + tr12ti21 − rr12ri21 − ri12rr21. (99)

So all necessary expressions that relate measured ellipsometric and magneto-ellipsometric pa-
rameters with refraction indices, coefficients of extinction, magneto-optical coupling parameter
in case of a two-layer model are obtained. The final step is giving the best fit to the experi-
mental data by the use of the wavelength-to-wavelength Nelder–Mead minimization [13] of the
ellipsometric angles. It yields real and imaginary parts of magneto-optical parameter Q, thus
information about all elements of the dielectric permittivity tensor can be obtained from the
experiment.
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3. Conclusion

To conclude, we have proposed an approach to studying two-layer nanomaterials by means of
magneto-ellipsometry. The algorithm of experimental data analysis (ψ0, δ0, ψ0 + δψ, ∆0 + δ∆)
is presented. As a result, optical and magneto-optical properties can be easily and reliably
characterized during films growth through the presented formulae that are to be used in the
software for magneto-optical ellipsometry setups.
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Двухслойная модель отражающих ферромагнитных пле-
нок для исследования тонких пленок методом магнитоэл-
липсометрии
Ольга А. Максимова, Сергей Г. Овчинников, Николай Н. Косырев,

Сергей А. Лященко

Представлен метод анализа магнито-эллипсометрических измерений. Детально рассматрива-
ется двуслойная модель ферромагнитных отражающих пленок. Полученный алгоритм может
использоваться для контроля оптических и магнито-оптических свойств пленок в процессе их
роста в вакуумных камерах.

Ключевые слова: Магнито-оптическая эллипсометрия, эффект Керра, двухслойная модель, фер-
ромагнетик, отражение, контроль роста.
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