
Coherent control of light pulse propagation in a Raman induced grating

V.G. Arkhipkin1,2∗ and S.A. Myslivets1,3
1Kirensky Institute of Physics, Federal Research Center KSC SB RAS,

50, Akademgorodok, Krasnoyarsk 660036, Russia
2Laboratory for Nonlinear Optics and Spectroscopy,

Siberian Federal University, Krasnoyarsk 660079, Russia and
3Department of Photonics and Laser Technology,

Siberian Federal University, Krasnoyarsk 660079, Russia

We study light pulse propagation in a dynamically controllable periodic structure (grating) re-
sulting from Raman interaction of a weak probe pulse with a standing-wave pump and a second
control laser field in the N-type four-level atomic media. The grating is induced due to periodic
spatial modulation of the Raman gain in a standing pump field (Raman gain grating). We show
that it is possible to control both the probe pulse amplitude and the group velocity of the pulse
from subluminal to superluminal by varying the pump or control field. Such a grating is of interest
for the all-optical switch and transistor.

PACS numbers: 42.50.Gy, 42.65.Dr

I. INTRODUCTION

Propagation of light in periodic structures has been an
attractive field of research in recent years. Photonic crys-
tals (PCs) represent a broad and special class of struc-
tures with the periodicity of the refractive index (the real
part of the dielectric constant) on the wavelength scale in
one, two, or three dimensions [1]. They have optical band
gaps, which offers a possibility to control the propagation
of light in a way similar to the control of electron flow
in semiconductors. Additional functionality can be cre-
ated by including absorbing or amplifying features into
the structure thus producing PCs with complex dielectric
indices [2]. The great opportunities for creating recon-
figurable PC offer the optically-induced gratings [3]. In
particular, such structures could be created by using elec-
tromagnetically induced transparency (EIT) [4] when the
strong-coupling laser field is replaced by a standing wave
[5, 6]. A standing wave driving configuration has been
proposed to induce spatially periodic quantum coherence
for generation of PBG [6–8] and dynamic generation of
stationary light pulses [9, 10]. These structures are also
referred to as an electromagnetically induced absorption
grating (EIAG) [11]. EIAG may be utilized for diffract-
ing [12], switching [11] and compressing [13] the probe
field.This scheme is also used for atoms localizing in a
standing-wave field [14, 15].

An alternative approach is based on using the Raman
gain effect [16] in three- and four-level media where we
can control amplification of the probe (signal) field. It
has been shown that slow [17] and fast [18] light as well
as a gain-assisted giant Kerr effect [19] can be obtained
by using Raman gain medium. A fast Kerr phase gate
using the Raman gain method has been experimentally
demonstrated where the probe wave travels superlumi-
nally [20]. In our papers [21, 22] it is shown how one
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could use a three- and four-level Raman gain medium to-
gether with a PC cavity to create an all-optical switch for
the probe beam. Recently, we have proposed electromag-
netically induced gratings based on spatial modulation of
the Raman gain in a standing-wave pump field [23, 24],
which are called Raman induced gratings (RIG). These
gratings are fundamentally different from EIAG schemes
where the absorption is spatially modulated. Owing to
periodic spatial modulation of the Raman gain, the weak
probe wave propagates in the forward (a transmitted
wave) and backward (a reflected wave) directions. In [23]
it is shown that transmitted and reflected wave can be
simultaneously amplified at the certain frequency band
and the transmission and reflection spectra can be con-
trolled (from amplification to suppression) by varying the
pump field intensity. In [24] we shown that transmis-
sion and reflection spectra of the RIG can be controlled
with the help of an additional control field by varying
its intensity or frequency. In this paper, we extend our
previous results [23, 24] to further investigate the probe
pulse propagation in such a grating. We show that it
is possible to control both the amplitude of the probe
pulse (with amplification or suppression) and the group
velocity from subluminal to superluminal by varying the
pump or control field. This structure can operate as an
all-optical switch and a transistor.

II. BASIC THEORY

A model for coherent control of the Raman induced
grating is shown schematically in Fig. 1. It can be
described by a four-level N-type configuration initially
prepared in the ground state |0〉. The ground |0〉 and
metastable |2〉 levels are coupled to the excited level
|1〉 by a strong pump field at frequency ω1 and a weak
probe (signal) field at the frequency ω2 and wave num-
ber k2. A strong control field at frequency ω3 and
wave number k3 is applied to the transition |2〉 − |3〉
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FIG. 1. A schematic diagram of the four-level N-type atomic
system for coherent manipulation of the probe (signal) light
pulse. The pump field with frequency ω1 is a standing wave.
The probe pulse has a carrier frequency ω2, and ω3 correspond
to the control field. The frequency detuning δ1,2,3 denote the
detunings from one-photon resonances for the pump, probe
and control fields, respectively.

to enable manipulation by means of the Raman gain.
The probe (Es = 1/2E2 exp [−i(ω2t− k2z)]) and con-
trol (Ec = 1/2E3 exp [−i(ω3t− k3z)]) fields propagate
along the z direction and interact with the transitions
|1〉 − |2〉 and |2〉 − |3〉, respectively. The pump field
is a standing wave along the z direction. It is formed
by two monochromatic counter-propagating fields Ep =
1/2{E1+ exp [−i(ω1t− k1z)] + E1− exp [−i(ω1t+ k1z)]},
where E1+ and E1− are the amplitudes of the forward
(+) and backward (−) pump fields with the respective
Rabi frequencies G1+ and G1−. The pump fields are
detuned from state |1〉 by large one-photon detuning so
that single-photon absorption can be neglected. We as-
sume that the Rabi frequency of the probe is much lower
than the Rabi frequencies of the pump and control field,
which are considered strong fields. The intensity of the
pump radiation field is selected such that the threshold
of stimulated Raman scattering is not exceeded being,
however, high enough to ensure notable amplification of
the probe wave. At the same time, spontaneous Raman
gain should be much less than the stimulated one.

The induced macroscopic polarization at the probe fre-
quency ω2 will be P (ω2) = Nρ21d12 = χ(ω2)E2, where N
is the atomic number density, χ(ω2) is the linear Raman
susceptibility. We assume that the fields are limited to a
value such that the change of population of the ground
level ρ0 due to absorption to other levels under applied
fields is small, i.e. ρ0 ≈ 1. The steady-state density
matrix equations of motion for the four-level system un-
der the dipole and rotating wave approximation can be
written as

∆2ρ21 = iG∗1ρ20 − iG∗3ρ31
∆20ρ20 = −iG∗2ρ10 + iρ21G1 − iG∗3ρ30
∆1ρ10 = −iGpρ0

∆30ρ30 = −iG32ρ20 + iρ31Gp

∆31ρ31 = −iG3ρ21 + iρ30G
∗
p (1)

where Gp = G1+ exp (ik1z) + G1− exp (−ik1z), G1± =
E1±d10/2~, G2 = E2d12/2~, G3 = E3d32/2~ denote the

Rabi frequencies of the pump, probe and control fields,
respectively, ∆1 = γ10 − iδ1, ∆2 = γ12 − iδ2, ∆3 = γ32 −
iδ3, ∆30 = γ30 − iδ30, ∆31 = γ31 − iδ31, and δ1,2,3 =
ω1,2,3 − ω10,12,32 is the one-photon detuning, δ20 = δ1 −
δ2 is the Raman detuning, δ30 = δ1 − δ2 + δ3, δ31 =
δ3− δ2; ωmn, γmn and dmn are the frequency, half-width
and matrix dipole moment of the respective transitions;
~ is the reduced Planck constant. Eqs. (1) are valid if
|G2| � |G1±|, |G3|, δ1 � γ10, |G1±|.

The solution for the element ρ21 (to the first order in
the probe field and to all orders in the pump and control
fields) is

ρ21 = −iG2

∆1
|Gp|2(∆30∆31 + |Gp|2 − |G3|2)/D, (2)

where

D = (|Gp|2 − |G3|2)2 + (∆20|Gp|2 + ∆31|G3|2)∆∗2+

(∆31|Gp|2 + ∆20|G3|2)∆30 + ∆30∆20∆31∆∗2

From (2), the susceptibility χ(ω2) experienced by the
probe field can be written as

χ(ω2) = −iαrγ10
∆1
|Gp|2(∆30∆31 + |Gp|2−|G3|2)/D, (3)

where αr = |d12|2N/2~γ10. When the control field is
switched off (G3 = 0), formula (3) is essentially simplified
(see the appendix).

Further, we shall assume that the amplitudes of the
pump field are real and E1+ = E1− = E1. In this
case, the pump field is a perfect standing wave with
the Rabi frequency Gp(z) = G1 cos(k1z), where G1 =
E1d10/~. Susceptibility (3), which depends on z through
|Gp(z)|2 = G2

1 cos2(k1z) = G2
1[1+cos(2k1z)]/2, is an even

periodical function. Thus, susceptibility for the probe
field is modulated periodically in space with the period
Λ = λ1/2, where λ1 is the wavelength of the pump field.
This leads to spatial modulation of the Raman gain and
the refractive index. Amplification takes place in the
antinodes region of the standing wave, but there is no
gain in the nodes. We called such a structure a Raman
induced grating [23]. It should be emphasized that this
grating is a hybrid one: an amplitude (gain) grating and
a phase (refraction) one. Therefore, the probe field prop-
agates in such a medium as in a one-dimensional (1D)
periodic structure, i.e. it may propagate both in the for-
ward (the transmitted wave), and backward (reflected
wave) direction.

The wave equation for the probe field E2(z) in a spa-
tially modulated medium with the susceptibility χ(ω2, z)
i n a frequency domain takes the form [25, 26]

d2E2(ω2, z)

d z2
+ k22[1 + 4πχ(ω2, z)]E2 = 0, (4)

where k2 = ω2/c is the vacuum probe wave number. The
solution of (4) can be represented as a superposition of
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two waves propagating in opposite directions:

E2(z) = A(z)eik2z +B(z)e−ik2z, (5)

where A(z) and B(z) are the amplitudes of the forward
and backward probe wave, respectively. Using the cosine
Fourier expansion χ(ω2, z) = χ0 + 2

∑∞
n=1 χn cos(2nk1z)

(χ is an even function) and the coupled mode analysis
[26], we can find the amplitudes A(z) and B(z) [23]

A(z) = A0
s cos s(L− z) + i(∆k − α) sin s(L− z)

s cos(sL) + i(∆k − α) sin(sL)
(6)

B(z) = A0
σ sin s(L− z)

s cos(sL) + i(∆k − α) sin(sL)
(7)

where s =
√

(∆k − α)2 − σ2, α = 2πk2χ0, σ = 2πk2χ1,
∆k = k1 − k2.

χm(ω2) = (k1/π)

∫ π/k1

0

χ(ω2, z) cos(2mk1z)dz (8)

In defining (6) and (7), we used χ0 (m = 0) and χ1 (m =
1), i.e. we restricted ourselves to two spatial harmonics
and also used the boundary conditions A(z = 0) = A0,
B(L) = 0, where A0 is the incident probe wave amplitude
(no Fresnel reflection from the interface).

Let us introduce the amplitude coefficients of trans-
mission (gain) t(ω2, z = L) = A(ω2, L)/A0 and reflection
r(ω2, z = 0) = B(ω2, 0)/A0

t(ω2) =
s cos(sL)

s cos(sL) + i(∆k − α) sin(sL)
, (9)

r(ω2) =
σ sin(sL)

s cos(sL) + i(∆k − α) sin(sL)
. (10)

Then we can easily obtain the energy transmittance T =
|t(ω2)|2 and reflectance R = |r(ω2)|2.

III. RESULTS AND DISCUSSION

For numerical simulations we use the parameters cor-
responding to the D1 line of Na atoms, and the levels
|0〉 and |2〉 are long-lived hyperfine sublevels of the elec-
tronic ground state 3S1/2. The atomic parameters are

γ10 = 2π× 10 MHz, γ20 = γ10/100, N = 1012 cm−3, and
the sample length is L = 5 mm. The Rabi frequency of
the pump (G1) and control (G3) fields will be expressed
in the units of γ10 and the Raman detuning δ20 in γ20
units.

2

δ
20

0

-2
1

0.5G
1

T

0
0

100
(a)

50

δ
20

-2

0

2

0
0.5G

1

(b)

R

1
0

50

100

FIG. 2. The transmission (a) and reflection (b) vs Raman
detuning δ20 (in γ20 units) and pump Rabi frequency G1 (in
γ10 units) in the case when the control field is off (G3 = 0).

A. The transmission and reflection spectra

Let us first consider the case when the control field is
switched off (G3 = 0). In Fig. 2 the transmission T and
reflection R for the probe field are plotted as functions
of the Raman detuning δ20 and pump Rabi frequency
G1 at a fixed one-photon detuning δ1 = −100γ10. It
can be seen that the transmission and reflection spec-
tra strongly depend on the pump field intensity. The
transmitted and reflected light can be amplified in some
frequency range. Therefore, transmittance and reflectiv-
ity can be interpreted as a transmission and reflection
gain, respectively. The transmission spectra depend on
the Raman detuning δ20 and have a resonance character
at the pump Rabi frequency. As the pump field intensity
increases, there occurs a dip in the transmission spectrum
near the Raman resonance. The depth and width of the
dip increase with the pump intensity and the dip center is
shifted due to the Stark shift of the resonance frequency
of the Raman transition (see (A1) in Appendix). In the
area between the peaks the sample may become opaque
(T → 0). A similar behavior also holds for reflection, but
the dip is less pronounced. Away from the Raman reso-
nance, the gain disappears (T → 1 and R → 0). Thus,
by changing the intensity of the pump field we can con-
trol the transmission (reflection) spectrum of the probe
radiation under Raman interaction with a standing wave
pump.

The presence of an additional control field (ω3 in
Fig. 1) leads to essential modification of the propagation
properties of the medium [24]. The typical transmission
spectrum is shown in Fig.3 as a function of the Raman
detuning δ20 and the control field Rabi frequency G3. It
is seen that the transmission has a resonant character
as a function of G3, i.e. peak occurs at the certain val-
ues G3, and its position depends on the intensity of the
pump field. The intensity of the control field decreases
with increasing thickness of the sample L. Note that
small variations of the control field intensity can change
the system from opaque to transparent (with amplifica-
tion) and vice versa. In [24] it is shown that in the case of
non-perfect standing pump wave with the unequal ampli-
tudes for forward and backward fields, the transmission
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FIG. 3. The transmission spectrum vs Raman detuning δ20
and control Rabi frequency G3 (in γ10 units) for the case when
the pump Rabi frequency G1 = 0.8, and and the frequency
detuning of the control field δ3 =0.

and reflection spectra qualitatively have the same behav-
ior. And although they are sensitive to the difference
between the amplitudes of contradirected pump waves,
however it is not critical and does not lead to noticeable
changes in the discussed dependencies. A similar behav-
ior occurs for the reflection spectrum.

B. Control of light-pulse propagation

Using Eqs. (9)–(10) and the Fourier transform method
one can study the propagation dynamics of an inci-
dent probe pulse assuming that the pump standing wave
and the control field are continuous and monochromatic
waves. Here, we assume that the input probe pulse has
the following Gaussian profile in the time and frequency
domains

E2i(t) = E0 exp (−t2/τ2)

E2i(ω2) = 2−1/2τE0 exp [−τ2(ω2 − ω2c)
2/4],

where E0 is the pulse amplitude, 2τ = T2p is the pulse
width at the level e−1, ω2c is the carrier frequency of
the probe pulse. The transmitted and reflected Fourier
components can be derived from E2T (ω2) = t(ω2)E2i(ω2)
and E2R(ω2) = r(ω2)E2i(ω2). The transmitted and re-
flected probe pulse in the time domain via inverse Fourier
transform is given by

E2T,2R(t) =

∫ ∞
−∞

E2T,2R(ω2) exp (−iω2t) dω2 (11)

Let us first consider the case G3 = 0, i.e. the control
field is off. Fig. 4 shows a typical behavior of the trans-
mitted (z = L) and reflected (z = 0) probe pulse for
different values of the pump Rabi frequency G1 under
Raman resonance for the carrier frequency of the pulse
(δ2c = ω1 − ω2c − ω20 = 0). One can see that the trans-
mitted and reflected pulses are sensitive to G1. When
the Rabi frequency G1 corresponds to the left branch of
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FIG. 4. The transmitted IT (a, b) and reflected IR (c) probe
light pulse for different values of the Rabi frequency G1 in the
case when G3 = 0, δ2c = 0. a) 1 – G1 = 0.1, 2 – G1 = 0.2, 3 –
G1 = 0.31, 4 – G1 = 0.34; b) 1 – G1 = 0.43, 2 – G1 = 0.45, 3
– G1 = 0.5, 4 – G1 = 0.8; c) 1 – G1 = 0.2, 2 – G1 = 0.31, 3 –
G1 = 0.34. The maximum of the reference pulse (not shown)
corresponds to τ = 0. The inset shows transmission T as a
function of the pump field Rabi frequency.

the curve T (G1) (inset in Fig. 4a), the transmitted pulse
is amplified and enhances with increasing G1 (Fig. 4a).
In the case when G1 corresponds to the right branch of
the curve T (G1), the pulse amplification decreases with
increasing G1 (Fig. 4b). A similar behavior also takes
place for the reflected pulses (Fig. 4c). Thus, the RIG
can operate as an all-optical switch and an amplifier. A
similar pattern is observed for other detunings δ2c.

We also note that the transmitted (reflected) pulse may
either lag (Fig. 4a and 4c) or lead (Fig. 4b) the refer-
ence pulse (not shown), which covers the same distance
in a vacuum. Therefore, we can speak about subluminal
propagation of the probe pulse, when the pulse group ve-
locity is less than the speed of light in vacuum (a slow
light), or superluminal propagation, when the group ve-
locity is negative or higher than the speed of light in
vacuum (fast light) [27].

Group delay for the transmitted and reflected pulse
can be calculated as [28]

τT,Rg =

(
∂ΦT,R
∂ω2

)
ω2=ω2c

where ΦT,R are the phase of the transmission t(ω2) and
reflection r(ω2) coefficient, respectively. A positive group
delay (the pulse at the output appears later than the ref-
erence) corresponds to the subluminal propagation. A
negative group delay (the pulse at the output appears
earlier than the reference) corresponds to the superlumi-
nal propagation. The inset in Fig. 5 shows the group de-
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FIG. 5. Spectral dependences of the phase of the transmitted
probe wave for the Rabi frequencies G1 = 0.31 and G1 = 0.45.
Inset: the group delay τg as a function of detuning from the
Raman resonance δ2c for the same G1.

lay τg as a function of the detuning δ20 for the values G1

corresponding to the curves 3 (Fig. 4a) and 2 (Fig. 4b).
In the first case (G1 = 0.31) τg > 0 (subluminal propaga-
tion) and in the second case (G1 = 0.45) τg < 0 (superlu-
minal propagation). Calculations show that subluminal
propagation occurs when the Rabi frequency G1 corre-
sponds to the left branch of the dependence T (G1) (see
the inset in Fig. 4a), where normal dispersion for the
probe wave is realized (Fig. 5). When G1 corresponds to
the right branch of the dependence T (G1), superluminal
propagation arises since dispersion for the probe wave
becomes anomalous (Fig. 5). The mechanism of attain-
ing normal and anomalous dispersion is associated with
dispersion of the RIG (structural dispersion) rather than
the Raman medium (material dispersion).

The presence of a control field opens new possibilities
for manipulating the propagation dynamics of the probe
pulse. Fig. 6 illustrates the transmitted and reflected
Gaussian probe pulse for various Rabi frequencies G3 at
different values of the pump Rabi frequency G1 (the op-
erating point). The pulse propagation dynamics depends
essentially on the Rabi frequencyG3. Figs. 6a, b show the
transmitted and reflected probe pulse in the case when
the Rabi frequency G1 corresponds to the left branch of
the curve T (G1) or R(G1), respectively. Selecting the in-
tensity of the control field, we can suppress the reflected
pulse. In this case, RIG acts as a controllable amplifier
for transmitted and reflected pulses. Note that here we
deal with subliminal pulses (τg > 0) and τg depends on
G3.

Fig. 6c shows the case when the intensity of the pump
field is selected such that transmittance of the grating is
close to zero (atG3 = 0). When the control field is turned
on the pulse amplification increases with G3 (curves 2
and 3 in Fig. 6a) as long as the Rabi frequency G3 corre-
sponds to the left branch of the curve T (G3) (the inset in
Fig. 6a). When G3 corresponds to the right branch, the
pulse amplification decreases with increasing G3. Mean-
while, the group velocity of the pulse also changes from
subluminal to superluminal. Thus, by changing the con-
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FIG. 6. The transmitted (IT ) and reflected (IR) probe light
pulse for different values of the Rabi frequency G1 and δ32 =
0, δ2c = 0. (a), (b): G1 = 0.36, 1 – G3 = 0, 2 – G3 = 0.05,
3 – G3 = 0.2. (c): G1 = 0.8, 1 – G3 = 0, 2 – G3 = 0.15, 3
– G3 = 0.16, 4 – G3 = 0.21, 5 – G3 = 0.25. The insets show
the transmission T (a, c) and reflection R (b) as a function
of the control field Rabi frequency G3.

trol field intensity we can change the system from opaque
to transparent (with amplification) and vice versa, i.e.,
this structure can operate as an all-optical transistor.

IV. CONCLUSION

We have presented a theoretical study on the probe
light pulse propagation under Raman interaction with a
pump standing wave in three- and four-level media. For
a three-level atomic system, we show that, it is possible
to control both the transmission (reflection) of the probe
pulse and the dispersion of RIG (structural dispersion)
by changing the intensity of the pump field. Herewith
the dispersion can be changed from normal to abnor-
mal, and we can therefore manipulate the pulse group
velocity from subliminal to superluminal. We have also
shown that adding a control field coupled to a fourth
state, the properties of the weak probe light pulse propa-
gation are greatly changed. In particular small variations
in the intensity of control field transfer the system from
the opaque to transparent (with amplification) state and
vice versa. Therefore this structure can operate as an all-
optical transistor. At the same time, it can be used as a
nonlinear controllable mirror with the reflectivity greater
than unity. Also due to the variation of the control field
intensity, the probe pulse propagation can be changed
from subluminal to superluminal. This opens new pos-
sibilities to manipulate the dispersion and transmission
and may be used in different fields of applied photonics.
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The intensity of the control and pump field strongly
depends on a number of parameters (detuning from
one-photon and Raman resonances, a Raman resonance
width, a sample thickness and others). The required laser
fields intensity is tens–hundreds mW/cm2 for the pump
field and 2-3 orders of magnitude lower for the control
field.
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Appendix A:

In the appendix, we give the formula for the suscep-
tibility χ(ω2, z) for the case when the control field is off
(G3 = 0) and calculate the Fourier components (8) χ0

and χ1 in this case. It is not difficult to show that when
G3 = 0 and |δ1| � γ10, |δ2| � γ12 susceptibility (3)
simplifies to

χ(ω2, z) =
αrγ10
δ1

G2
1 [1 + cos(2k1z)] /2

δ2 [δ20 +G2
1/2δ2 + iγ20 +G2

1 cos(2k1z)/2δ2]
(A1)

From Eq. (A1) we see that a strong pump field
(G2

1/|δ2| � γ20) causes a shift in the resonance frequency
of the Raman transition (the Stark shift). In the case of
a weak pump field (G2

1/|δ2| � γ20) Eq. (A1) is consistent
with the standard Raman susceptibility as defined in the
perturbation theory [16].

For susceptibility (A1) the spatial Fourier components
χ0 and χ1 are calculated analytically. To calculate in-
tegrals (8) for the χ(ω2, z), formula (A1) is conveniently

rewritten as

χ(ω2, z) =
αrγ10
δ1

A[1 + cos(2k1z)]

1 +A cos(2k1z)
, (A2)

where A =
G2

1

2δ2

1

δ20 +G2
1/2δ2 + iγ20

.

Then

χ0 =
k1
π

αrγ10
δ1

A

∫ π/k1

0

1 + cos(2k1z)

1 +A cos(2k1z)
dz =

αrγ10
δ1

1−A+
√

1−A2

1 +A
(A3)

χ1 =
k1
π

αrγ10
δ1

A

∫ π/k1

0

1 + cos(2k1z)

1 +A cos(2k1z)
cos(2k1z)dz =

αrγ10
δ1

A2 − 1 +
√

1−A2

A(1 +A)
(A4)

Numerical simulations using formula (8) with G3 = 0 are in good agreement with the analytical results (A3)–(A4).
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