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Using computer simulation of magnetization in a polycrystalline ferromagnetic nanowire, we demonstrate

the occurrence of the characteristic spatial scale in the distribution of magnetization unrelated to the

domain wall or crystallite size. This is the stochastic domain size. We show that this length not only

manifests itself in the analysis of magnetization distribution but is included in the spectral density of the

force pinning a domain wall to inhomogeneities of the crystallographic anisotropy. The parameters of a

stochastic domain, including the constant and distribution of axes directions of the e�ective anisotropy,

are analytically calculated.
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In this work, we investigate the unusual self-organization type, speci�cally, the occurrence

of the stochastic magnetization superstructure in a polycrystalline 1D ferromagnet. A polycrys-

talline nanowire with a crystallite size somewhat smaller than the domain wall thickness (tens of

nanometers) is considered. The magnetization �eld in the absence of the uniform macro-scopic

anisotropy is a conglomerate of the so-called stochastic domains (SDs) or magnetic blocks (MBs)

with length δS [1, 2, 3, 4].

Ferromagnetic crystallites forming a wire exhibit the random orientation of local easy magne-

tization axes (EMAs). The crystallites are so small that the inequality a ≪ δ0 can be considered

valid, where a is the crystallite size and δ0 =
√

A/K is the domain wall size in a homogeneous

material (A and K are the exchange and anisotropy constants, respectively). Since the param-

eter a is small, the coordinate dependence of the magnetization m(r) inside a crystallite can

be considered weak. The total energy E(ϑ1...ϑN+1, ϕ1...ϕN+1) of a magnet is represented by a

function of magnetization direction angles at the grain boundaries, including polar angle ϑ and

azimuth angle ϕ. For the expression for energy E, we took into account the exchange energy

inside a crystallite and between crystallites, the anisotropy energy, the Zeeman energy, and the

magnetostatic interaction energy between crystallites in the dipole approximation.
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Figure 1: Polar angles distribution of the e�ective anisotropy axis of a stochastic domain. Plot
1 and Plot 2 show the uniform distribution of local axes in a cone from −π/2 to +π/2 and in a
cone from −π/100 to −π/100 respectively; Plot 3 shows the Gaussian approximation for a cone
from −π/100 to −π/100.

To calculate the e�ective anisotropy constant for a block, one can write the torque from the

random anisotropy �eld of a crystallites ensemble contained in the SD and the e�ective anisotropy

torque as:

Mϑ =
∂

∂ϑ

N∑
n=1

vnKn (mnen)
2
, Mϑef

=
∂

∂ϑ
V Kef (meef )

2
. (1)

Here, vn andKn are the volume and local anisotropy constants for the nth crystallite respectively,

en are the EMA direction orts, and N is the number of crystallites in a SD, Kef and eef are

the e�ective anisotropy constant and the e�ective anisotropy axis (EAA) direction vector of the

block respectively, and V =
∑

vn is the block volume. Expressions (1) were equalized to obtain

Kef =

[
⟨K2⟩−µ2⟨K⟩2

N

(
σ2
v + 1

)
+ µ2 ⟨K⟩2

] 1
2

. Here, µ = ⟨cos(2(αn − αm))⟩, α is the crystallite

EMA polar angle, and σv is the dimensionless crystallite volume dispersion.

To study the features of the distribution of the SD e�ective easy axes directions, one can

return to Eq. (1). Using this equation, the expression for the e�ective direction of the anisotropy

axis is obtained: sin(2αef ) =
K

Kef

N∑
n=1

sin(2αn) = s0.

The density of distribution of the quantity sin(2αef ) = s can be presented in the form

ρ(s) =
α0∫

−α0

...
α0∫

−α0

N∏
n=1

ρ(αn)δ(s − s0)dαn. Here, ρ(αn) is the density of distribution of the EMA

polar angles. For simplicity, assume this function to be independent on the crystallite number

and α0 to be a half of the polar angle of cone opening in the EMA distribution. Then multiply

ρ(s) by the exponential factor with �tting parameter β and expansion in the Fourier integral

[5]. After we make the inverse transform. The calculated ρ(αef ) values are presented in Fig 1 in

comparison with the Gaussian approximation of the calculated density (β = 0).

With appearance of the magnetostatic interaction SDs become invisible. Classical do-

mains and domain walls appear. Meanwhile, the magnetization self-organization is observed

in nanowires in the presence of the uniform macroscopic anisotropy induced by magnetostatics.

Stochastic domains are analogous to the normal modes of bound oscillators, which can be excited

or not, but exist as a structural unit.

We apply an external magnetic �eld in the direction opposite to the average magnetization.
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Figure 2: Enhancement of magnetization �uctuations with the increase in the external magnetic
�eld h = HMS/K. The solid line corresponds to h = 0 and the dashed line corresponds to
h = 0.05 (�gure a). Domain structure formed at attaining the critical �eld (�gure b).

The applied �eld increases deviations of the magnetization from the z axis direction. The be-

ginning of this process is illustrated in Fig. 2a. When the external �eld attains a critical value

Hnucl ≈ 0.16µ0MS , the magnetization of separate nuclei rotates drastically, which results in the

emergence of 180- or 360-degree domain walls [6]. Figure 2b illustrates the end of this process.

The obtained domains are located in the places where SDs would be located if the induced

magnetostatic anisotropy is absent.

Spectral study of the magnetization distribution function allows considering the structure in

more detail without switching the sample magnetization. Consider the spectral density of the

spatial distribution of the polar angle ϑ(z). The e�ects masking the self-organization (external

�eld, texture in the EMA directions, magnetostatics, etc.), are not re�ected in the spectral

density. The long-wavelength region makes the main contribution to the spectral density.

In this study, the nanowire magnetization switching was simulated in order to investigate the

pinning force spectrum. As the magnetic �eld applied along the z axis was increased, the total

SD energy was detected and its derivative yielded the force of interaction between the wall and

inhomogeneities. Figure 3 presents the result of the spectral analysis of the force relief with the

same cross section and parameter b = a/δ0 = 0.1, but di�erent ratios µ0M
2
S/K. The maximum

corresponding to the large k values is determined by the magnetization ripples upon tuning to

the local anisotropy of separate crystallites. The wavelength of this ripples is about b. The

other maximum is, in our opinion, complex and contains peaks responsible for the domain wall

width δW and SD size (in this case, their characteristic sizes are comparable, i.e., the average

wavelengths coincide). The �gure shows that with decreasing of MS , the maximum creeps and

the density peak responsible for the increasing domain wall width becomes pronounced. In this

case, the peak responsible for the SD is nearly invariable. Thus, the force relief has at least three

pronounced harmonics: a) SD size (long-wavelength mode); b) domain wall (long-wavelength

mode); c) crystallite size (short-wavelength mode). The theoretical numerical estimation of δW
is in satisfactory accordance with the simulation results shown in Fig. 3.

We reported the results of computer simulation of the properties of magnetization and relief

pinning a domain wall in 1D inhomogeneous ferromagnets. The dependence of the harmonic

wavelength responsible for the stochastic domain on the linear crystallite size coincides with the

theoretical estimates.

This study was supported by RFBR, Project No. 14-02-00238-a.
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Figure 3: Spectral density Ω(k) of the force relief for samples with di�erent MS values. The
EMA directions are distributed randomly and uniformly over a sphere. Here, k ≈ 1/λ, where λ
is measured in units of a.
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Îá èåðàðõèè õàðàêòåðíûõ äëèí íàìàãíè÷åííîñòè íàíî-
ïðîâîëîê

Àíàòîëèé À. Èâàíîâ, Âèòàëèé À. Îðëîâ

Â êîìïüþòåðíîì ìîäåëèðîâàíèè íàìàãíè÷åííîñòè â ïîëèêðèñòàëëè÷åñêîé ôåððîìàãíèòíîé íà-

íîïðîâîëîêå ïðîäåìîíñòðèðîâàíî âîçíèêíîâåíèå õàðàêòåðíîãî ïðîñòðàíñòâåííîãî ìàñøòàáà â

ðàñïðåäåëåíèè íàìàãíè÷åííîñòè, íå ñâÿçàííîé ñ ðàçìåðîì äîìåííîé ñòåíêè èëè ðàçìåðîì êðè-

ñòàëëèòà. Ýòî ðàçìåð ñòîõàñòè÷åñêîãî äîìåíà. Ïîêàçàíî, ÷òî äàííàÿ äëèíà ïðîÿâëÿåòñÿ íå

òîëüêî ïðè àíàëèçå ðàñïðåäåëåíèÿ íàìàãíè÷åííîñòè, íî è ñîäåðæèòñÿ â ñïåêòðàëüíîé ïëîòíî-

ñòè ñèëû, çàêðåïëÿþùåé äîìåííóþ ñòåíêó íà íåîäíîðîäíîñòÿõ êðèñòàëëîãðàôè÷åñêîé àíèçîòðî-

ïèè. Àíàëèòè÷åñêè âû÷èñëåíû ïàðàìåòðû ñòîõàñòè÷åñêîãî äîìåíà: êîíñòàíòà è ðàñïðåäåëåíèå

íàïðàâëåíèé îñåé ýôôåêòèâíîé àíèçîòðîïèè.

Êëþ÷åâûå ñëîâà: äîìåííàÿ ñòåíêà, íàíîïðîâîëîêà, ìàãíåèíûå íåîäíîðîäíîñòè
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