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Abstract

The question of the determination of subgroups A and B such that A ∩ Bg 6= 1 for any g ∈ G for
a finite almost simple group G and its primary subgroups A and B of odd order set up. We prove
that there exist four possibilities for ordered pair (A,B) only.

Introduction
Let G be a finite group and A, B be its subgroups. By the definition, M is the set of subgroups
which are minimal by inclusion among all subgroups of type A∩Bg, g ∈ G, and m consists of those
elements of the set M the order of which is minimal. Set MinG(A,B) = 〈M〉, and minG(A,B) =
〈m〉. Evidently, MinG(A,B) ≥ minG(A,B) and the following three conditions are equivalent:

а) A ∩Bg 6= 1 for any g ∈ G;
б) MinG(A,B) 6= 1;
в) minG(A,B) 6= 1.
The second author showed that MinG(A,B) ≤ F (G) for any pair of abelian subgroups A and

B of G [4, Theorem 1], where F (G) is the Fitting subgroup of G (the greatest normal nilpotent
subgroup of G). On the other hand, V. I. Zenkov and V.D.Mazurov proved that MinG(A,B) = 1
for any pair of primary subgroups A and B of a simple nonabelian group G [3, Theorem 1]. But
also in almost simple group G ' Aut(L2(7)) we have MinG(S, S) = minG(S, S) = S for a Sylow
2-subgroup S of G. Moreover it is proved in [5] that for a group G with socle L2(q), q > 3, if
subgroups A and B are primary, then the inequality MinG(A,B) 6= 1 is valid only for q = 9 and
for the Mersenne prime q = 2n − 1; in these cases subgroups A and B are 2-groups.

In the present article we consider the case when A and B are primary subgroups of odd order
in a finite almost simple group G. Our main result is the following theorem.

Theorem 1. Let G be a finite almost simple group and A, B be its primary subgroups of odd order.
Then the following are equivalent.
(1) MinG(A,B) 6= 1.
(2) G contains a normal subgroup of index 1 or 2, which is isomorphic to D4(3)hZ3, and (A,B) ∈
{S, S0}2. Where S is a Sylow 3-subgroup of G, S0 = O3(NG(P )) and P is a minimal proper
parabolic subgroup of the group D4(3) corresponding to the central node of the Coxeter graph of
type D4. Moreover S0 = minG(S, S).

In section 2 we establish some necessary for the proof of theorem 1 properties of subgroups of
Chevalley groups, which in the opinion of the authors and are of independent interest.
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1. Notations and preliminary results
A finite group G is called almost simple, if Inn(K) ≤ G ≤ Aut(K), where K is a finite simple non-
abelian group, and Inn(K) and Aut(K) are groups of inner and respectively all automorphisms of
a group K. In this article the following shortcuts and notations are used:

gh = h−1gh for elements g and h of a group G;
AB = {ab | a ∈ A, b ∈ B} for subsets A and B of a group G;
A ≤ G denotes that A is a subgroup of a group G;
〈M〉 is the group generated by a set M ;
NG(A) is the normalizer of a subgroup A in a group G;
Op(G) is the maximal normal p-subgroup of a finite group G;
AhB is the semidirect product of groups A and B with a normal subgroup A.

Actually, the proof of the implication (1) ⇒ (2) of Theorem 1 is reduced to the analysis of
situation in the group D4(3) h Z3 by the usage of the following result of the second author.

Lemma 1. [5, Theorem B(2a)] Let G be a finite almost simple group, p be an odd prime and S
be a Sylow p-subgroup of G. If S ∩ Sg 6= 1 for any element g of G, then p = 3 and G contains a
normal subgroup of index 1 or 2, which is isomorphic to D4(3) h Z3.

We will also need the following two technical lemmas, which will be use in the sequel.

Lemma 2. [5, Lemma 3.1] Let G be a finite group and M1 be a subgroup of G. Let P1 be a Sylow
p-subgroup of M1 such that P1 ∩ P k1 = Op(M1) for some k ∈ M , and M2 be a conjugate with M1

subgroup of G. Then there exists Sylow p-subgroup P2 ofM2 such that P1∩P2 ≤ Op(M1)∩Op(M2).

Lemma 3. Let A,B, S be subgroups of a finite group G such that MinG(A,B) 6= 1, A ≤ S and
A ∩ Bh = S ∩ Sh = T for some element h ∈ G and some cyclic subgroup T of prime order. Then
TS ≤ A.

Proof. By the lemma conditions we have T s = S∩Shs ≥ A∩Bhs 6= 1 for any s ∈ S. Therefore
taking into account that T is a cyclic subgroup of prime order, we deduce the inclusion T s ≤ A
for any s ∈ S, that is TS ≤ A. The lemma is proved.

2. Some properties of intersections of Sylow p-subgroups
of Chevalley groups over a finite field of characteristic p
Further Φ is a reduced indecomposable root system, Π = {r1, ..., rl} is its set of fundamental roots,
Φ+ is a positive root system respect to Π, and also Φ− = −Φ+. We always suggest, that r1 is a
short root and sum ri + rj , i ≤ j, is a root if and only if:

(i, j) = (l − 3, l) or (i, i+ 1), 1 ≤ i ≤ l − 2, if Φ = El;
(i, j) = (1, 3) or (i, i+ 1), 2 ≤ i ≤ l − 1, if Φ = Dl;
(i, j) = (i, i+ 1) in all other cases.

We will need the following strengthening the Lemma 3.6.2 from the book R.Carter [2, p. 50].

Lemma 4. Let a fundamental root ri1 be a part with nonzero coefficient of the expression of a
root r ∈ Φ+ as an integral combination of fundamental roots with non-negative coefficients. Then
r can be expressed as a sum of fundamental roots

r = ri1 + ri2 + · · ·+ rik

in such a way that ri1 + ri2 + · · ·+ ris is a root for all s ≤ k.

Proof. Let
r = c1r1 + · · ·+ clrl.
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be the expression of a root r ∈ Φ+ as an integral combination of fundamental roots with non-
negative coefficients. Obviously, that we have two following cases only: 1) ci ≤ 1; 2) at least one of
numbers ci is more than one.

For any subgraph of the Coxeter graph of type Φ, whose vertices are labeled by fundamental
roots rj1 , . . . , rjm , the sum rj1 + · · ·+ rjm if and only if is a root when this subgraph is connected.
Therefore in the first case the lemma is true. The second case is reduced by induction to the first
one by virtue of the following assertion.

A) If ci > 1 for some i, then there exists j such that cj > 1 and the difference r − rj is a root.
Assertion A) can be directly verified for every root system.
For the root system of type Al the first case is possible only.
For the root system of type Bl in the case 2) we have r = 2r1 + · · · + 2rs + rs+1 + · · · + rt,

where 1 ≤ s < t ≤ l. Here the one variant j = s is possible only, in order that the difference r− rj
is a root.

For the root system of type Cl in the case 2) we have r = rt+ · · ·+ rs−1 + 2rs+ · · ·+ 2rl−1 + rl,
where 1 ≤ t ≤ s ≤ l− 1 (for s = 1 we set r = 2r1 + · · ·+ 2rl−1 + rl). Here also one variant j = s is
possible only.

For the root system of type Dl in the case 2) we have r = r1+r2+2r3+· · ·+2rs+rs+1+· · ·+rt,
where 3 ≤ s < t ≤ l. Here also one variant j = s is possible only.

In the Tables V–VIII from [1] for the exceptional types El and F4 all positive roots, which have
even one of numbers cj more than one are listed. Using these tables, it is not difficult to check
the validity of the assertion А) for the types El and F4. Note that even here for some roots the
parameter j is not uniquely defined.

For type G2 the conclusion А) correctness is easily checked and in this case the parameter j is
defined uniquely.

Hence, the assertion А), along with lemma is proved.

Further Φ(q) is an adjoint Chevalley group of type Φ of rank l over the finite field Fq of the
order q = pn, where p is a prime. The group Φ(q) is generated by the root subgroups

Xr = 〈xr(t) | t ∈ K〉, r ∈ Φ,

where xr(t) is the corresponding root element in the group Φ(q). We will need the following natural
subgroups of the group Φ(q):

unipotent subgroups
U = 〈Xr | r ∈ Φ+〉,

V = 〈Xr | r ∈ Φ−〉,
monomial subgroup

N = 〈nr(t) | r ∈ Φ, t ∈ F∗q〉,
diagonal subgroup

H = 〈hr(t) | r ∈ Φ, t ∈ F∗q〉
and Borel subgroup

B = UH.

Here, F∗q is the multiplicative subgroup of the field Fq and

nr(t) = xr(t)x−r(−t−1)xr(t),

hr(t) = nr(t)nr(−1).

We set also
I = {1, 2, . . . , l}.

Overgroups of the Borel subgroup B and conjugate with them are called parabolic. Due to
familiar result of J.Tits, parabolic subgroups containing subgroup B are

PJ = 〈B,nrj (1) | j ∈ J〉,
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where J ⊆ I.

Lemma 5. Fix a monomial element n0 with condition Un0 = V and a positive integer i ∈ I.
Set n = n0nri(1). Then U ∩ Un = Xri .

Proof. The root subgroups Xri and X−ri normalize the subgroup

Vri = 〈Xr | r ∈ Φ−\{−ri}〉

and V = VriX−ri [2, Lemma 8.1.1]. Therefore Un = V nri
(1) = VriXri . Clearly, that U ∩ VriXri =

Xri . The lemma is proved.

For l = 1 the root subgroup Xri coincides with a Sylow p-subgroup of the group Φ(q) and in
this case the element n from Lemma 5 is diagonal.

Lemma 6. Let P = PI\{i} be the parabolic maximal subgroup of the group Φ(q) of type Al,
Dl or El of rank l ≥ 2 and the monomial element n as in Lemma 5. Then U ∩ Un = Xri and
〈XU

ri〉 = Op(P ).

Proof. For Chevalley groups Φ(q) of any type, the equality

Op(P ) = 〈Xr | r = ckrk + · · ·+ ciri + · · ·+ cmrm, 1 ≤ k ≤ i ≤ m ≤ l, cj ≥ 1〉.

holds [2, Theorem 8.5.2]. For types Al,Dl and El, all structure constants of Chevalley’s commutator
formula are equal to 1. Hence, using Lemma 4, we can obtain the equality 〈XU

ri〉 = Op(P ). Really,
let Xr ∈ Op(P ). Then by Lemma 4 as i = i1 for the root r we have the following representation

r = ri1 + ri2 + · · ·+ rik ,

where the sum ri1 + ri2 + · · ·+ ris is the root for all s ≤ k. Therefore, we obtain inclusions

[Xri1
, Xri2

] = Xri1+ri2
⊂ 〈XU

ri〉,

[Xri1+ri2
, Xri3

] = Xri1+ri2+ri3
⊂ 〈XU

ri〉,

...........................................................

[Xri1+···+rik−1
, Xrk ] = Xri1+···+rik = Xr ⊂ 〈XU

ri〉.

Hence, 〈XU
ri〉 = Op(P ). Lemma 5 gives the equality U ∩ Un = Xri . The lemma is proved.

Lemma 6 conclusion can not be adapted in general for each types Bl, Cl, F4 and G2. For
example, the following result holds.

Lemma 7. Let P = PI\{1} be the parabolic maximal subgroup of the group Φ(2) of type Bl,
l ≥ 2, over the field of two elements, where r1 is short root. There is no a root subgroup Xr such
that 〈XU

r 〉 = Op(P ).

Proof. Due to the parabolic maximal subgroup P draw, the following equality is valid

Op(P ) = 〈Xs | s = c1r1 + · · ·+ ckrk, 1 ≤ k ≤ l, cj ≥ 1〉.

It is trivial, that the equality 〈XU
r 〉 = Op(P ) is admissible only for r = r1. Note that subgroup 〈XU

r1〉
contains the product xr1+r2(1)x2r1+r2(1), but individually the elements xr1+r2(1) and x2r1+r2(1)
do not belong to 〈XU

r1〉. The lemma is proved.

The Picture 1 depicts correspondence between nodes of the Coxeter graph and roots from the
fundamental root system, which are associated with the Chevalley group of type D4, is recognized.
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Lemma 8. Let G = D4(3) h 〈τ〉 and S = U h 〈τ〉, where τ is the graph automorphism of order 3
of the group D4(3) as on the picture 1, and let the monomial element n = n0nr1(1) ∈ D4(3) be as
in Lemma 5. Then S ∩ Sn = Xr1 , in particular, U ∩ Un = Xr1 .

Proof. In the Weyl group of type D4 there exists an element w0 such that w0(r) = −r for any
root r. Moreover, w0 coincides with cube c3 of the Coxeter element

c = wr3wr1wr2wr4 .

Hence in our case the element n0 is the preimage of the element w0 under the homomorphism
of the monomial subgroup of the group D4(3) on the Weyl group of type D4. Moreover, we can
suggest, that

n0 = (nr3(1)nr1(1)nr2(1)nr4(1))3.

Since the graph automorphism τ centralizes the monomial element

nr3(1)nr1(1)nr2(1)nr4(1)

(see Picture 1 and [2, Proposition 12.2.3]), then

τn = τnr1
(1) = τnr2(−1)nr1(1).

It is clear that τnr2(−1)nr1(1) 6∈ 〈τ〉. Therefore, and from the equality U ∩ Un = Xr1 , which is
given by Lemma 5, we obtain the equality S ∩ Sn = Xr1 . The lemma is proved.

Lemma 9. Let G,S and τ as Lemma 8. Set S0 = Ur3 h 〈τ〉, where Ur3 = 〈Xr | r ∈ Φ+\{r3}〉.
Then S0 = minG(S, S).

Proof. The subgroup S is a Sylow 3-subgroup of G. Therefore, by Lemma 1 S ∩ Sx 6= 1 for
any x ∈ G, hence minG(A,B) = 〈m〉 6= 1 and by Lemma 5 the set m consists of subgroups of
order 3. Further, in the Coxeter graph of type D4 the roots r1, r2 and r4 coincide with symmetric
nodes (see Picture 1), hence Lemma 8 is valid, if the root r1 is exchanged with the root r2 or r4.
Therefore by Lemma 6 O3(P{i}) ≤ minG(S, S) for any i = 1, 2, 4. Thus, Lemmas 1, 5, 6 and 8
along with the equality

〈O3(PI\{1}), O3(PI\{2}), O3(PI\{4})〉 = O3(P{3})

give the inclusion S0 ≤ minG(S, S).
Suppose S0 < minG(S, S). Then there is exists an element (subgroup) D of the set m such

that D = S ∩ Sg 6≤ S0 for some g ∈ G. Because of |S ∩ Sg| = 3 by Lemma 8, then S0 ∩ Sg0 = 1.
Subgroups S and S0 satisfy the conditions of Lemma 2 as

G = D4(3) h 〈τ〉,

M1 = NG(P{3}),

P1 = S,
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O3(M1) = S0,

k = nr3(1)

O3(M2) = S0.

Thus by Lemma 2
S ∩ Sx ≤ S0 ∩ Sg0 = 1

for suitable x ∈ G. Hence, S ∩ Sx = 1. Contradiction with Lemma 1. The lemma is proved.

3. The proof of the Theorem 1
Let a group G satisfies the conditions of Theorem 1. Further, we use the notations of the preceding
paragraph for subgroups and elements of the Chevalley group D4(3).

(1) ⇒ (2) Let MinG(A,B) 6= 1. Since A and B are primary subgroups, then the condition
MinG(A,B) 6= 1 implies that subgroups A and B are p-groups for an odd prime p . Hence, without
loosing generality, we can suggest, that subgroups A and B lie in one fixed Sylow p-subgroup S of
the group G. Now again by the condition MinG(A,B) 6= 1 we get the inequality S ∩ Sg 6= 1 for
any element g of G. Therefore by Lemma 1 we can suggest, that p = 3 and the group G contains
the normal subgroup

G0 = D4(3) h 〈τ〉

of index 1 or 2, where τ is a graph automorphism of order 3 of the group D4(3). We can suggest,
that

S = U h 〈τ〉.

Let
n0 = (nr3(1)nr1(1)nr2(1)nr4(1))3.

Then (see the proof of Lemma 8)
S ∩ Sn0 = 〈τ〉.

Since
〈τ〉 = S ∩ Sn0 ≥ A ∩Bn0 6= 1,

then we obtain
A ∩Bn0 = 〈τ〉.

By Lemma 8 there exists a monomial element n ∈ D4(3) such that

S ∩ Sn = Xr1 .

Since
Xr1 = S ∩ Sn ≥ A ∩Bn 6= 1,

then
A ∩Bn0 = Xr1 .

Now by Lemma 3, we have
XS
r1 ≤ A.

By Lemma 6,
〈XU

r1〉 = O3(PI\{1}).

As τ ∈ A,
〈O3(PI\{1}), O3(P τI\{1}), O3(P τ

2

I\{1})〉 = O3(P{3}) ≤ A.

Hence
O3(NG(P{3})) ≤ A.

Suppose that
S0 = O3(NG(P{3})).
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Note, that |S : S0| = 3. Therefore, either A = S0 or A = S. The condition A ∩ Bg 6= 1 for any
g ∈ G is equivalent to the condition B ∩Ag−1 6= 1 for any g ∈ G. Thus

(A,B) ∈ {S, S0}2.

It remains only to prove equality S0 = minG(S, S). We have two cases only: a) G = G0;
b) |G : G0| = 2.

In case a), the equality S0 = minG(S, S) is valid by Lemma 9.
The case b) follows from a) and invariance of subgroup S with respect to outer (graph)

automorphisms of order 2 of the group D4(3).
(1)⇐ (2). It is clear that for pair (S, S) the inequality S∩Sg 6= 1 for any element g ∈ G follows

from recently found equality S0 = minG(S, S).
As it is already known, that S ∩ Sg 6= 1 for any g ∈ G and S ∩ Snr3

(1) = S0, then by Lemma 2
(see the proof of Lemma 9) we have S0 ∩ Sg0 6= 1 and, moreover, S0 ∩ Sg 6= 1 and S ∩ Sg0 6= 1 for
any g ∈ G. This concludes the proof of our theorem.
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